Predicting the Close-price of Cryptocurrency Using the Kernel Regression Algorithm

The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, oft...

Full description

Saved in:
Bibliographic Details
Published in2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C) pp. 1 - 7
Main Authors Polpinij, Jantima, Namee, Khanista, Sibunruang, Chumsak, Chothanom, Aniruth, Khamket, Thananchai, Meny, Ajeej, Charoensak, Rungtip, Kaenampornpan, Manasawee, Luaphol, Bancha
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.08.2023
Subjects
Online AccessGet full text
DOI10.1109/RI2C60382.2023.10356032

Cover

Abstract The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, often between 0 and 1. Furthermore, support vector regression (SVR) and long-short term memory (LSTM) were used to compare the prediction model-based on KR. The result of the KR models utilizing RMSE and MAPE demonstrated that the predictive model-based on KR gave more satisfying results.
AbstractList The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, often between 0 and 1. Furthermore, support vector regression (SVR) and long-short term memory (LSTM) were used to compare the prediction model-based on KR. The result of the KR models utilizing RMSE and MAPE demonstrated that the predictive model-based on KR gave more satisfying results.
Author Charoensak, Rungtip
Sibunruang, Chumsak
Khamket, Thananchai
Polpinij, Jantima
Meny, Ajeej
Chothanom, Aniruth
Kaenampornpan, Manasawee
Luaphol, Bancha
Namee, Khanista
Author_xml – sequence: 1
  givenname: Jantima
  surname: Polpinij
  fullname: Polpinij, Jantima
  email: jantima.p@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 2
  givenname: Khanista
  surname: Namee
  fullname: Namee, Khanista
  email: khanista.n@fitm.kmutnb.ac.th
  organization: King Mongkut's University of Technology North Bangkok,Bangkok,Thailand
– sequence: 3
  givenname: Chumsak
  surname: Sibunruang
  fullname: Sibunruang, Chumsak
  email: chumsak.s@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 4
  givenname: Aniruth
  surname: Chothanom
  fullname: Chothanom, Aniruth
  email: anirut@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 5
  givenname: Thananchai
  surname: Khamket
  fullname: Khamket, Thananchai
  email: thananchai.k@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 6
  givenname: Ajeej
  surname: Meny
  fullname: Meny, Ajeej
  email: Menya@ksau-hs.edu.sa
  organization: King Saud bin Abdulaziz University for Health Sciences Jeddah,Saudi Arabia
– sequence: 7
  givenname: Rungtip
  surname: Charoensak
  fullname: Charoensak, Rungtip
  email: rungtip.c@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 8
  givenname: Manasawee
  surname: Kaenampornpan
  fullname: Kaenampornpan, Manasawee
  email: manasawee.k@msu.ac.th
  organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand
– sequence: 9
  givenname: Bancha
  surname: Luaphol
  fullname: Luaphol, Bancha
  email: bancha.lu@ksu.ac.th
  organization: Kalasin University,Faculty of Administrative Science,Department of Digital Technology,Kalasin,Thailand
BookMark eNo1j81qwzAQhFVoDm2aNyhUL2BX0ta29hhMf0IDLSY5B8VaOQJHCrJ78NvX0OY0zPAxzNyz2xADMfYkRS6lwOdmo-pSgFa5EgpyKaCYrbphK6xQQyEARCn1HWu-E1nfjj50fDwRr_s4UHZJviUeHa_TdBlj-5MShXbi--HKfVIK1POGukTD4GPg676LyY-n8wNbONMPtPrXJdu_ve7qj2z79b6p19vMS4ljVsnClIZIH5WuSm2sUjgnhNrRsdCkhBEVIFq01pZOGOmsKACBHDhsX2DJHv96PREd5slnk6bD9Sr8Ar7LTys
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RI2C60382.2023.10356032
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350330618
EndPage 7
ExternalDocumentID 10356032
Genre orig-research
GrantInformation_xml – fundername: Mahasarakham University
  funderid: 10.13039/501100007288
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-715a6aee8b28768ad2295a6e98feb58e20a07399d9ddd6f0a1fd05393ef3f9c43
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:59 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-715a6aee8b28768ad2295a6e98feb58e20a07399d9ddd6f0a1fd05393ef3f9c43
PageCount 7
ParticipantIDs ieee_primary_10356032
PublicationCentury 2000
PublicationDate 2023-Aug.-24
PublicationDateYYYYMMDD 2023-08-24
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)
PublicationTitleAbbrev RI2C
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8445593
Snippet The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bitcoin
Closed-price cryptocurrency
kernel regression (KR)
long-short term memory (LSTM)
predictive model
Predictive models
Rendering (computer graphics)
Sensitivity
Supply and demand
Support vector machines
support vector regression (SVR)
Technological innovation
Title Predicting the Close-price of Cryptocurrency Using the Kernel Regression Algorithm
URI https://ieeexplore.ieee.org/document/10356032
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-tbZJ2yVGKYyqOMRzsNtLkZQ5nW2p3mH-9SbopCoK3koY05NfXvPd97yF0TWWi8h6QAMBbq3QSSEZUoJSFByAglE8H9DRMBxP2ME2mG7G618IAgCefQegevS9fl2rlTGV2h1ML0NSeuLt2nbVirQ1nK47EzfieZPY1d_oqQsNt7R95Uzxs9PfRcPvBli3yGq6aPFQfv2Ix_rtHB6j7rdDDoy_sOUQ7UByh8ah2bhdHZMb2vw5ny_IdgsqFDcKlwVm9rhrbpAvIpNbYkwV8vUeoC1jiMcxbUmyBb5fzsl40L29dNOnfPWeDYJMzIVjEsWiCXpzIVALw3F6FUi61S9ctUxDcQJ5wIJF0vjmhhdY6NZGMjbb7UFAw1AjF6DHqFGUBJwiLSEhtJIuUMYzlwCMVc5PmpmfbkIqdoq4bkFnVhsWYbcfi7I_yc7Tn5sUZZAm7QJ2mXsGlRfQmv_Iz-QlPg6O5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pSceK3OXht7UfaJkcpjs19MMYGu400eZnD2Y7aHeZfb5JuioLgLZRHGvJIfu17v997CN2HPBJZAoEDYKNVMnI4CYQjhIYHCIAJ2w6oP4jbE_I8jaZbsbrVwgCAJZ-Ba4Y2ly8LsTahMn3CQw3Qob5x9zXwk6iWa21ZW77HHkadINUG1CisgtDd2f_onGKBo3WEBrtX1nyRV3ddZa74-FWN8d9rOkbNb40eHn6hzwnag_wUjYalSbwYKjPWX3Y4XRbv4KxM4SBcKJyWm1WlpzQlmcQGW7qAtetCmcMSj2Be02Jz_LicF-WienlroknraZy2nW3XBGfh-6xyEj_iMQegmf4ZiimXpmE3j4FRBVlEIfC4yc4xyaSUsfK4r6Q-iSwEFSomSHiGGnmRwznCzGNcKk48oRQhGVBP-FTFmUr0HFyQC9Q0GzJb1YUxZru9uPzj-R06aI_7vVmvM-heoUPjIxOeDcg1alTlGm40vlfZrfXqJxA9pwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Research%2C+Invention%2C+and+Innovation+Congress%3A+Innovative+Electricals+and+Electronics+%28RI2C%29&rft.atitle=Predicting+the+Close-price+of+Cryptocurrency+Using+the+Kernel+Regression+Algorithm&rft.au=Polpinij%2C+Jantima&rft.au=Namee%2C+Khanista&rft.au=Sibunruang%2C+Chumsak&rft.au=Chothanom%2C+Aniruth&rft.date=2023-08-24&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FRI2C60382.2023.10356032&rft.externalDocID=10356032