Predicting the Close-price of Cryptocurrency Using the Kernel Regression Algorithm
The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, oft...
Saved in:
Published in | 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C) pp. 1 - 7 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
24.08.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/RI2C60382.2023.10356032 |
Cover
Abstract | The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, often between 0 and 1. Furthermore, support vector regression (SVR) and long-short term memory (LSTM) were used to compare the prediction model-based on KR. The result of the KR models utilizing RMSE and MAPE demonstrated that the predictive model-based on KR gave more satisfying results. |
---|---|
AbstractList | The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three datasets: Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH). The min-max normalization method was used to scale feature values to a common range, often between 0 and 1. Furthermore, support vector regression (SVR) and long-short term memory (LSTM) were used to compare the prediction model-based on KR. The result of the KR models utilizing RMSE and MAPE demonstrated that the predictive model-based on KR gave more satisfying results. |
Author | Charoensak, Rungtip Sibunruang, Chumsak Khamket, Thananchai Polpinij, Jantima Meny, Ajeej Chothanom, Aniruth Kaenampornpan, Manasawee Luaphol, Bancha Namee, Khanista |
Author_xml | – sequence: 1 givenname: Jantima surname: Polpinij fullname: Polpinij, Jantima email: jantima.p@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 2 givenname: Khanista surname: Namee fullname: Namee, Khanista email: khanista.n@fitm.kmutnb.ac.th organization: King Mongkut's University of Technology North Bangkok,Bangkok,Thailand – sequence: 3 givenname: Chumsak surname: Sibunruang fullname: Sibunruang, Chumsak email: chumsak.s@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 4 givenname: Aniruth surname: Chothanom fullname: Chothanom, Aniruth email: anirut@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 5 givenname: Thananchai surname: Khamket fullname: Khamket, Thananchai email: thananchai.k@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 6 givenname: Ajeej surname: Meny fullname: Meny, Ajeej email: Menya@ksau-hs.edu.sa organization: King Saud bin Abdulaziz University for Health Sciences Jeddah,Saudi Arabia – sequence: 7 givenname: Rungtip surname: Charoensak fullname: Charoensak, Rungtip email: rungtip.c@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 8 givenname: Manasawee surname: Kaenampornpan fullname: Kaenampornpan, Manasawee email: manasawee.k@msu.ac.th organization: Mahasarakham University Mahasarakham,Faculty of Informatics,Thailand – sequence: 9 givenname: Bancha surname: Luaphol fullname: Luaphol, Bancha email: bancha.lu@ksu.ac.th organization: Kalasin University,Faculty of Administrative Science,Department of Digital Technology,Kalasin,Thailand |
BookMark | eNo1j81qwzAQhFVoDm2aNyhUL2BX0ta29hhMf0IDLSY5B8VaOQJHCrJ78NvX0OY0zPAxzNyz2xADMfYkRS6lwOdmo-pSgFa5EgpyKaCYrbphK6xQQyEARCn1HWu-E1nfjj50fDwRr_s4UHZJviUeHa_TdBlj-5MShXbi--HKfVIK1POGukTD4GPg676LyY-n8wNbONMPtPrXJdu_ve7qj2z79b6p19vMS4ljVsnClIZIH5WuSm2sUjgnhNrRsdCkhBEVIFq01pZOGOmsKACBHDhsX2DJHv96PREd5slnk6bD9Sr8Ar7LTys |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/RI2C60382.2023.10356032 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350330618 |
EndPage | 7 |
ExternalDocumentID | 10356032 |
Genre | orig-research |
GrantInformation_xml | – fundername: Mahasarakham University funderid: 10.13039/501100007288 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-715a6aee8b28768ad2295a6e98feb58e20a07399d9ddd6f0a1fd05393ef3f9c43 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:59 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-715a6aee8b28768ad2295a6e98feb58e20a07399d9ddd6f0a1fd05393ef3f9c43 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10356032 |
PublicationCentury | 2000 |
PublicationDate | 2023-Aug.-24 |
PublicationDateYYYYMMDD | 2023-08-24 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C) |
PublicationTitleAbbrev | RI2C |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8445593 |
Snippet | The aim of this work is to utilize the kernel regression (KR) approach to predict the closed-price for cryptocurrencies. This study makes use of three... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Bitcoin Closed-price cryptocurrency kernel regression (KR) long-short term memory (LSTM) predictive model Predictive models Rendering (computer graphics) Sensitivity Supply and demand Support vector machines support vector regression (SVR) Technological innovation |
Title | Predicting the Close-price of Cryptocurrency Using the Kernel Regression Algorithm |
URI | https://ieeexplore.ieee.org/document/10356032 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-tbZJ2yVGKYyqOMRzsNtLkZQ5nW2p3mH-9SbopCoK3koY05NfXvPd97yF0TWWi8h6QAMBbq3QSSEZUoJSFByAglE8H9DRMBxP2ME2mG7G618IAgCefQegevS9fl2rlTGV2h1ML0NSeuLt2nbVirQ1nK47EzfieZPY1d_oqQsNt7R95Uzxs9PfRcPvBli3yGq6aPFQfv2Ix_rtHB6j7rdDDoy_sOUQ7UByh8ah2bhdHZMb2vw5ny_IdgsqFDcKlwVm9rhrbpAvIpNbYkwV8vUeoC1jiMcxbUmyBb5fzsl40L29dNOnfPWeDYJMzIVjEsWiCXpzIVALw3F6FUi61S9ctUxDcQJ5wIJF0vjmhhdY6NZGMjbb7UFAw1AjF6DHqFGUBJwiLSEhtJIuUMYzlwCMVc5PmpmfbkIqdoq4bkFnVhsWYbcfi7I_yc7Tn5sUZZAm7QJ2mXsGlRfQmv_Iz-QlPg6O5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pSceK3OXht7UfaJkcpjs19MMYGu400eZnD2Y7aHeZfb5JuioLgLZRHGvJIfu17v997CN2HPBJZAoEDYKNVMnI4CYQjhIYHCIAJ2w6oP4jbE_I8jaZbsbrVwgCAJZ-Ba4Y2ly8LsTahMn3CQw3Qob5x9zXwk6iWa21ZW77HHkadINUG1CisgtDd2f_onGKBo3WEBrtX1nyRV3ddZa74-FWN8d9rOkbNb40eHn6hzwnag_wUjYalSbwYKjPWX3Y4XRbv4KxM4SBcKJyWm1WlpzQlmcQGW7qAtetCmcMSj2Be02Jz_LicF-WienlroknraZy2nW3XBGfh-6xyEj_iMQegmf4ZiimXpmE3j4FRBVlEIfC4yc4xyaSUsfK4r6Q-iSwEFSomSHiGGnmRwznCzGNcKk48oRQhGVBP-FTFmUr0HFyQC9Q0GzJb1YUxZru9uPzj-R06aI_7vVmvM-heoUPjIxOeDcg1alTlGm40vlfZrfXqJxA9pwY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Research%2C+Invention%2C+and+Innovation+Congress%3A+Innovative+Electricals+and+Electronics+%28RI2C%29&rft.atitle=Predicting+the+Close-price+of+Cryptocurrency+Using+the+Kernel+Regression+Algorithm&rft.au=Polpinij%2C+Jantima&rft.au=Namee%2C+Khanista&rft.au=Sibunruang%2C+Chumsak&rft.au=Chothanom%2C+Aniruth&rft.date=2023-08-24&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FRI2C60382.2023.10356032&rft.externalDocID=10356032 |