EdgeYOLO: An Edge-Real-Time Object Detector
An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during traini...
Saved in:
Published in | Chinese Control Conference pp. 7507 - 7512 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
24.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during training, and a hybrid random loss function is designed to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP 50 in MS COC02017 dataset, 26.9% AP 50:95 and 45.4% AP 50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS230) on edge-computing device Nvidia Jetson AGX Xavier. And as is shown in Fig. 1, lighter models with less parameters designed for edge computing devices with lower computing power also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo. |
---|---|
AbstractList | An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during training, and a hybrid random loss function is designed to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP 50 in MS COC02017 dataset, 26.9% AP 50:95 and 45.4% AP 50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS230) on edge-computing device Nvidia Jetson AGX Xavier. And as is shown in Fig. 1, lighter models with less parameters designed for edge computing devices with lower computing power also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo. |
Author | Wang, Gang Li, Zhuo Zha, Junlin Liu, Shihan Sun, Jian |
Author_xml | – sequence: 1 givenname: Shihan surname: Liu fullname: Liu, Shihan email: liushihan@bit.edu.cn organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081 – sequence: 2 givenname: Junlin surname: Zha fullname: Zha, Junlin email: jlzha8101@163.com organization: Beijing Institute of Technology Chongqing Innovation Center,Chongqing,China,401135 – sequence: 3 givenname: Jian surname: Sun fullname: Sun, Jian email: sunjian@bit.edu.cn organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081 – sequence: 4 givenname: Zhuo surname: Li fullname: Li, Zhuo email: zhuoli@bit.edu.cn organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081 – sequence: 5 givenname: Gang surname: Wang fullname: Wang, Gang email: gangwang@bit.edu.cn organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081 |
BookMark | eNo1z81Kw0AUBeBRFGxr30Awe5k4d25n5o67ktYfCASkLlyVzMyNpLSpJNn49lbUzfk4mwNnKi66Y8dC3ILKNXrw90VRGLLe5VppzOEU3pE9E_MTnsgZArPAczEBjwsJztKVmA7DTimrPOBE3K3TB79XZfWQLbvsp8hXrvdy0x44q8KO45iteDxx7K_FZVPvB57_ORNvj-tN8SzL6umlWJayBfCjtJEMsbfIKpoIGhvjgjO2oZi0i6lBQ6FGU6eQnE4pKYoIlnSAYJNmnImb392WmbeffXuo-6_t_zn8BkrzQ74 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/CCC58697.2023.10239786 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9789887581543 9887581542 |
EISSN | 1934-1768 |
EndPage | 7512 |
ExternalDocumentID | 10239786 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61925303,62173034,62088101 funderid: 10.13039/501100001809 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-6c858e963e0c5c123f57b756f8cd27cdf358ba35adbd72ddd08c31682b1b6d2e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:47:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-6c858e963e0c5c123f57b756f8cd27cdf358ba35adbd72ddd08c31682b1b6d2e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10239786 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-24 |
PublicationDateYYYYMMDD | 2023-07-24 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | CCC |
PublicationYear | 2023 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 |
Score | 2.4245167 |
Snippet | An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7507 |
SubjectTerms | Anchor-free Computational modeling Detectors edge-real-time hybrid random loss Image edge detection object detector Performance evaluation Real-time systems Source coding Training |
Title | EdgeYOLO: An Edge-Real-Time Object Detector |
URI | https://ieeexplore.ieee.org/document/10239786 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvhmD94k230k2aw3WVuKaCtioZ5KkpmICFuR7cVfb7Lb9QWCtyQk5MVkksl83xByFkkEa2xKlRJIGYKTOdAR1TLTmWKRAeHBybdjMZqy6xmfrcDqNRYGEWvnMwx9sv7Lh4VZelNZ39MMuFeP6JCOe7k1YK322BWe4LJx4HKV4rxfFAWXIs9CHyA8bJv-CKJS65DhJhm3vTeuIy_hstKhef9FzPjv4W2R3hdcL7j7VETbZA3LHbLxjWlwl5wP4AkfJzeTi-CyDHyG3rsrIvUIkGCivTEmuMKqNuH3yHQ4eChGdBUngT7HcV5RYSSX6CQJI8ONU0WWu4XmwkoDSWbAplxqlXIFGrIEACJpfLyqRMdaQILpHumWixL3SZAotCxVuXBVGTNKxU6ilRGWq4zlaXpAen7e89eGCmPeTvnwj_Ijsu6X3xtDE3ZMutXbEk-cFq_0ab17Hzmgm2w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAXtiJ2cuCGnGaxHYcbCkUFuiDUSuVUeZkghJQilF74euykZZOQuMWRrXjR-MXjeW8AzgKBJtd5TKTkSCgaa3NGBUSJRCWSBtpwR07u9XlnRG_HbDwnq1dcGESsgs_Qd4_VXb6Z6plzlbWczIA99fBlWLHAz6KarrXYeLmTuKxDuGy1MG1lWcYETxPfpQj3F41_pFGpUOR6A_qL79fBIy_-rFS-fv8lzfjvDm5C84uw591_QtEWLGGxDevftAZ34LxtnvBx0B1ceJeF5wrkwf4kEscB8QbKuWO8KywrJ34TRtftYdYh80wJ5DkM05JwLZhAa0sYaKYtGOXMTjXjudAmSrTJYyaUjJk0yiSRMSYQ2mWsilSouIkw3oVGMS1wD7xIYk5jmXJblVItZWhtWmqeM5nQNI73oenGPXmtxTAmiyEf_PH-FFY7w1530r3p3x3CmlsK5xqN6BE0yrcZHltML9VJtZIfji2etg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=EdgeYOLO%3A+An+Edge-Real-Time+Object+Detector&rft.au=Liu%2C+Shihan&rft.au=Zha%2C+Junlin&rft.au=Sun%2C+Jian&rft.au=Li%2C+Zhuo&rft.date=2023-07-24&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=7507&rft.epage=7512&rft_id=info:doi/10.23919%2FCCC58697.2023.10239786&rft.externalDocID=10239786 |