EdgeYOLO: An Edge-Real-Time Object Detector

An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during traini...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 7507 - 7512
Main Authors Liu, Shihan, Zha, Junlin, Sun, Jian, Li, Zhuo, Wang, Gang
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 24.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during training, and a hybrid random loss function is designed to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP 50 in MS COC02017 dataset, 26.9% AP 50:95 and 45.4% AP 50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS230) on edge-computing device Nvidia Jetson AGX Xavier. And as is shown in Fig. 1, lighter models with less parameters designed for edge computing devices with lower computing power also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo.
AbstractList An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented in real time on edge computing platforms. An enhanced data augmentation method is developed to effectively suppress overfitting during training, and a hybrid random loss function is designed to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP 50 in MS COC02017 dataset, 26.9% AP 50:95 and 45.4% AP 50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS230) on edge-computing device Nvidia Jetson AGX Xavier. And as is shown in Fig. 1, lighter models with less parameters designed for edge computing devices with lower computing power also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo.
Author Wang, Gang
Li, Zhuo
Zha, Junlin
Liu, Shihan
Sun, Jian
Author_xml – sequence: 1
  givenname: Shihan
  surname: Liu
  fullname: Liu, Shihan
  email: liushihan@bit.edu.cn
  organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081
– sequence: 2
  givenname: Junlin
  surname: Zha
  fullname: Zha, Junlin
  email: jlzha8101@163.com
  organization: Beijing Institute of Technology Chongqing Innovation Center,Chongqing,China,401135
– sequence: 3
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
  email: sunjian@bit.edu.cn
  organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081
– sequence: 4
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
  email: zhuoli@bit.edu.cn
  organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081
– sequence: 5
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: gangwang@bit.edu.cn
  organization: Beijing Institute of Technology,National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing,China,100081
BookMark eNo1z81Kw0AUBeBRFGxr30Awe5k4d25n5o67ktYfCASkLlyVzMyNpLSpJNn49lbUzfk4mwNnKi66Y8dC3ILKNXrw90VRGLLe5VppzOEU3pE9E_MTnsgZArPAczEBjwsJztKVmA7DTimrPOBE3K3TB79XZfWQLbvsp8hXrvdy0x44q8KO45iteDxx7K_FZVPvB57_ORNvj-tN8SzL6umlWJayBfCjtJEMsbfIKpoIGhvjgjO2oZi0i6lBQ6FGU6eQnE4pKYoIlnSAYJNmnImb392WmbeffXuo-6_t_zn8BkrzQ74
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC58697.2023.10239786
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9789887581543
9887581542
EISSN 1934-1768
EndPage 7512
ExternalDocumentID 10239786
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61925303,62173034,62088101
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-6c858e963e0c5c123f57b756f8cd27cdf358ba35adbd72ddd08c31682b1b6d2e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:47:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-6c858e963e0c5c123f57b756f8cd27cdf358ba35adbd72ddd08c31682b1b6d2e3
PageCount 6
ParticipantIDs ieee_primary_10239786
PublicationCentury 2000
PublicationDate 2023-July-24
PublicationDateYYYYMMDD 2023-07-24
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-24
  day: 24
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2023
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.4245167
Snippet An efficient, low-complexity, and anchor-free object detector based on the state-of-the-art YOLO framework is proposed in this paper, which can be implemented...
SourceID ieee
SourceType Publisher
StartPage 7507
SubjectTerms Anchor-free
Computational modeling
Detectors
edge-real-time
hybrid random loss
Image edge detection
object detector
Performance evaluation
Real-time systems
Source coding
Training
Title EdgeYOLO: An Edge-Real-Time Object Detector
URI https://ieeexplore.ieee.org/document/10239786
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvhmD94k230k2aw3WVuKaCtioZ5KkpmICFuR7cVfb7Lb9QWCtyQk5MVkksl83xByFkkEa2xKlRJIGYKTOdAR1TLTmWKRAeHBybdjMZqy6xmfrcDqNRYGEWvnMwx9sv7Lh4VZelNZ39MMuFeP6JCOe7k1YK322BWe4LJx4HKV4rxfFAWXIs9CHyA8bJv-CKJS65DhJhm3vTeuIy_hstKhef9FzPjv4W2R3hdcL7j7VETbZA3LHbLxjWlwl5wP4AkfJzeTi-CyDHyG3rsrIvUIkGCivTEmuMKqNuH3yHQ4eChGdBUngT7HcV5RYSSX6CQJI8ONU0WWu4XmwkoDSWbAplxqlXIFGrIEACJpfLyqRMdaQILpHumWixL3SZAotCxVuXBVGTNKxU6ilRGWq4zlaXpAen7e89eGCmPeTvnwj_Ijsu6X3xtDE3ZMutXbEk-cFq_0ab17Hzmgm2w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAXtiJ2cuCGnGaxHYcbCkUFuiDUSuVUeZkghJQilF74euykZZOQuMWRrXjR-MXjeW8AzgKBJtd5TKTkSCgaa3NGBUSJRCWSBtpwR07u9XlnRG_HbDwnq1dcGESsgs_Qd4_VXb6Z6plzlbWczIA99fBlWLHAz6KarrXYeLmTuKxDuGy1MG1lWcYETxPfpQj3F41_pFGpUOR6A_qL79fBIy_-rFS-fv8lzfjvDm5C84uw591_QtEWLGGxDevftAZ34LxtnvBx0B1ceJeF5wrkwf4kEscB8QbKuWO8KywrJ34TRtftYdYh80wJ5DkM05JwLZhAa0sYaKYtGOXMTjXjudAmSrTJYyaUjJk0yiSRMSYQ2mWsilSouIkw3oVGMS1wD7xIYk5jmXJblVItZWhtWmqeM5nQNI73oenGPXmtxTAmiyEf_PH-FFY7w1530r3p3x3CmlsK5xqN6BE0yrcZHltML9VJtZIfji2etg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=EdgeYOLO%3A+An+Edge-Real-Time+Object+Detector&rft.au=Liu%2C+Shihan&rft.au=Zha%2C+Junlin&rft.au=Sun%2C+Jian&rft.au=Li%2C+Zhuo&rft.date=2023-07-24&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=7507&rft.epage=7512&rft_id=info:doi/10.23919%2FCCC58697.2023.10239786&rft.externalDocID=10239786