Chaos-based Key Generator using Artificial Neural Networks Models

Because of the growing number of attacks on existing systems, it is crucial to design new cryptographic techniques to ensure confidentiality. Although, the chaotic systems and deep learning methods have been proven to be effective in cryptography because of the nonlinearity and the high degree of ra...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS) pp. 1 - 5
Main Authors Kadir, Amina, Azzaz, Mohamed Salah, Kaibou, Redouane
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Because of the growing number of attacks on existing systems, it is crucial to design new cryptographic techniques to ensure confidentiality. Although, the chaotic systems and deep learning methods have been proven to be effective in cryptography because of the nonlinearity and the high degree of randomness [1] and due to this, we combined them to produce cryptographic keys. This paper presents the chaotic time series forecasting models in order to produce encryption keys applied in cryptographic applications. Our artificial neural network (ANN) is trained by the Unified chaotic system samples using the optimal layers design. For comparative purposes, we have tested the performances of the Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) models in terms of chaotic time series patterns prediction. The Mean Squared Error (MSE) of the model achieves a value of 3.2x10^{-3} and we discover that, despite the small differences between the predicted samples of LSTM and GRU models, they produce nearly identical results for the task of chaotic time series prediction when compared to the MLP.
AbstractList Because of the growing number of attacks on existing systems, it is crucial to design new cryptographic techniques to ensure confidentiality. Although, the chaotic systems and deep learning methods have been proven to be effective in cryptography because of the nonlinearity and the high degree of randomness [1] and due to this, we combined them to produce cryptographic keys. This paper presents the chaotic time series forecasting models in order to produce encryption keys applied in cryptographic applications. Our artificial neural network (ANN) is trained by the Unified chaotic system samples using the optimal layers design. For comparative purposes, we have tested the performances of the Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) models in terms of chaotic time series patterns prediction. The Mean Squared Error (MSE) of the model achieves a value of 3.2x10^{-3} and we discover that, despite the small differences between the predicted samples of LSTM and GRU models, they produce nearly identical results for the task of chaotic time series prediction when compared to the MLP.
Author Kaibou, Redouane
Kadir, Amina
Azzaz, Mohamed Salah
Author_xml – sequence: 1
  givenname: Amina
  surname: Kadir
  fullname: Kadir, Amina
  email: amina.kadir.94@gmail.com
  organization: Ecole Militaire Polytechnique Laboratoire Systèmes Electroniques et Numériques BP 17 Bordj El Bahri,Alger
– sequence: 2
  givenname: Mohamed Salah
  surname: Azzaz
  fullname: Azzaz, Mohamed Salah
  email: ms.azzaz@gmail.com
  organization: Ecole Militaire Polytechnique Laboratoire Systèmes Electroniques et Numériques BP 17 Bordj El Bahri,Alger
– sequence: 3
  givenname: Redouane
  surname: Kaibou
  fullname: Kaibou, Redouane
  email: kaibouredouane@gmail.com
  organization: Ecole Militaire Polytechnique Laboratoire Systèmes Electroniques et Numériques BP 17 Bordj El Bahri,Alger
BookMark eNo1j81OwzAQhI0EB1p4Aw4W95S1Y6_jYxSVgijtAThX22QDFiFBdirUtyfiRxrp08xhNDMTp_3QsxDXChZKgb-5r8plVT1ZdFOiQecLBQrspBMxU4jWYK7AnIuyeqMhZXtK3MgHPsoV9xxpHKI8pNC_yjKOoQ11oE5u-BB_MH4N8T3Jx6HhLl2Is5a6xJd_nIuX2-VzdZett6tpxjoLSvkxQ-f8HslzAdhgiwYsUGFgcq726CmnhoBr0E5bYwwWvjHeOe2U1aTbfC6ufnsDM-8-Y_igeNz938q_AUJsRsE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAECCS56710.2023.10105105
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665463104
9781665463102
EndPage 5
ExternalDocumentID 10105105
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-6779b6a9e806d6f64050a84006d7c969a3ada0ec02725444689d497727152a2f3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:15 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-6779b6a9e806d6f64050a84006d7c969a3ada0ec02725444689d497727152a2f3
PageCount 5
ParticipantIDs ieee_primary_10105105
PublicationCentury 2000
PublicationDate 2023-March-6
PublicationDateYYYYMMDD 2023-03-06
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-6
  day: 06
PublicationDecade 2020
PublicationTitle 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)
PublicationTitleAbbrev ICAECCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8739748
Snippet Because of the growing number of attacks on existing systems, it is crucial to design new cryptographic techniques to ensure confidentiality. Although, the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ANN
Artificial neural networks
Chaotic communication
Chaotic systems
cryptography
Deep learning
Generators
key generation
Logic gates
Multilayer perceptrons
Predictive models
Time series analysis
Title Chaos-based Key Generator using Artificial Neural Networks Models
URI https://ieeexplore.ieee.org/document/10105105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nTypOPE3OXhtbbc26TuOsjEVh6CD3UbSpCrKJmt30L_e99JNURA8tQ2UNiThy5f3ve8BXEhUKLPUBjFaEyRxxgdNBbGUUqfER1Jb-ojp7ViOJsn1NJ2uk9V9LoxzzovPXMi3PpZvF8WKj8pohcc8h9IWtBRik6y1NhKNI7y8yvuDPL9PpWKBM4FRuHnhR-kUjxzDHRhvvtkIRl7CVW3C4uOXHeO_f2oXOt9JeuLuC372YMvN96GfP-lFFTA2WXHj3kVjK03EWrDC_VH0l14cRLNOsC-Hv3gheCW4LNpr1YHJcPCQj4J1lYTgOY6xDqRSaKRGl0XSylLSDizSRNvoSRUoUfe01ZEriH-yHVkiM7QJ7fq6iqBbd8veAbTni7k7BKEipbRRxiIHZA2tdiJLzma90ugiQ3MEHe7_7K0xwphtun78R_sJbPMweMmWPIV2vVy5M8Lw2pz7sfsE9rKaLw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3ofNAnFSd-mwdfW9utzcfjKBud-0Bwg72NpElVlE627kF_vTdppygIPrUNlDYk4dyTe-4JwA0VTFAeay8UWnlRyO1GU4YsJZcx8pFY5y5jOhrTdBrdzeJZXazuamGMMU58Znx763L5epGt7VYZrvDQzqF4G3YwsOa0KteqrUTDQNz2k043SR5iyqzEGeHI37zy4_AUhx29fRhvvlpJRl78dan87OOXIeO_f-sAmt9leuT-C4AOYcsUR9BJnuRi5Vl00mRg3kllLI3UmliN-yPpLJ08COcdsc4c7uKk4CtiD0Z7XTVh2utOktSrz0nwnsNQlB5lTCgqheEB1TSnGIMFEokbPrFMUCHbUsvAZMhArSFZRLnQEcZ9LYbgLVt5-xgaxaIwJ0BYwJhUTGlhU7IK1zvSJaN5O1cy40KdQtP2f_5WWWHMN10_-6P9GnbTyWg4H_bHg3PYs0PiBFz0Ahrlcm0uEdFLdeXG8RM6DJ16
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Advances+in+Electronics%2C+Control+and+Communication+Systems+%28ICAECCS%29&rft.atitle=Chaos-based+Key+Generator+using+Artificial+Neural+Networks+Models&rft.au=Kadir%2C+Amina&rft.au=Azzaz%2C+Mohamed+Salah&rft.au=Kaibou%2C+Redouane&rft.date=2023-03-06&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICAECCS56710.2023.10105105&rft.externalDocID=10105105