Cloud-based Intrusion Detection System using Various Machine Learning Techniques

The growing popularity of cloud computing demands robust security measures. In the context of machine learning, this research work represents a novel method for enhancing cloud intrusion detection by integrating Deep Neural Networks (DNNs) with the Random Forest (RF) algorithm. The well-known NSL-KD...

Full description

Saved in:
Bibliographic Details
Published in2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV) pp. 413 - 420
Main Authors R, Arthi, Das, Utkalika, AK, Dhayaa Ranjjan, Balachandar, N
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing popularity of cloud computing demands robust security measures. In the context of machine learning, this research work represents a novel method for enhancing cloud intrusion detection by integrating Deep Neural Networks (DNNs) with the Random Forest (RF) algorithm. The well-known NSL-KDD dataset, a benchmark dataset for intrusion detection systems, is the subject of this research study. By utilizing DNNs' feature extraction skills and the RF algorithm's interpretability and ensemble characteristics, the study shows how effective the suggested method is at precisely recognizing and classifying different kinds of intrusions in cloud computing environments. The study also shows that the proposed DNN-RF model, which performs better than either model alone, specifying that it has the prospective to be used for real-time intrusion detection in cloud-based systems. The results underline how critical it is to use cutting-edge machine learning techniques to fortify cloud environments' security infrastructure, thereby lowering possible risks and protecting the integrity and confidentiality of sensitive data.
AbstractList The growing popularity of cloud computing demands robust security measures. In the context of machine learning, this research work represents a novel method for enhancing cloud intrusion detection by integrating Deep Neural Networks (DNNs) with the Random Forest (RF) algorithm. The well-known NSL-KDD dataset, a benchmark dataset for intrusion detection systems, is the subject of this research study. By utilizing DNNs' feature extraction skills and the RF algorithm's interpretability and ensemble characteristics, the study shows how effective the suggested method is at precisely recognizing and classifying different kinds of intrusions in cloud computing environments. The study also shows that the proposed DNN-RF model, which performs better than either model alone, specifying that it has the prospective to be used for real-time intrusion detection in cloud-based systems. The results underline how critical it is to use cutting-edge machine learning techniques to fortify cloud environments' security infrastructure, thereby lowering possible risks and protecting the integrity and confidentiality of sensitive data.
Author AK, Dhayaa Ranjjan
R, Arthi
Balachandar, N
Das, Utkalika
Author_xml – sequence: 1
  givenname: Arthi
  surname: R
  fullname: R, Arthi
  email: arthir2@srmist.edu.in
  organization: SRM Institute of Science and Technology,Department of Electronics and Communication Engineering,Chennai,India
– sequence: 2
  givenname: Utkalika
  surname: Das
  fullname: Das, Utkalika
  email: ug4769@srmist.edu.in
  organization: SRM Institute of Science and Technology,Department of Electronics and Communication Engineering,Chennai,India
– sequence: 3
  givenname: Dhayaa Ranjjan
  surname: AK
  fullname: AK, Dhayaa Ranjjan
  email: da0098@srmist.edu.in
  organization: SRM Institute of Science and Technology,Department of Electronics and Communication Engineering,Chennai,India
– sequence: 4
  givenname: N
  surname: Balachandar
  fullname: Balachandar, N
  email: ns5021@srmist.edu.in
  organization: SRM Institute of Science and Technology,Department of Electronics and Communication Engineering,Chennai,India
BookMark eNotj81KxDAUhSPoQsd5A4W-QGvS3iTNUupfoaLgONshub11AjOpNu1i3t4WXZ3Dd-DAd8XOQx-IsVvBMyG4uaurutqqvADIcp5DxjnX4oytjTZlIXlRSgXmkr1Xh35qU2cjtUkdxmGKvg_JA42E49I-TnGkYzLj8JVs7eD7KSavFvc-UNKQHcIybAj3wf9MFK_ZRWcPkdb_uWKfT4-b6iVt3p7r6r5JvRBmTBWAldghGSC0jiS23GmH5BCdFggacOba8BJAi1x3s4kEp0nkUilVrNjN368not334I92OO0El4u9Kn4BEu1Ohw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICV62344.2024.00071
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350385649
EndPage 420
ExternalDocumentID 10511096
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-644a5cfce94ecabe5cd0b7bcebccb71c474ccab7908447127f34454b7e1256663
IEDL.DBID RIE
IngestDate Wed May 22 07:08:29 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-644a5cfce94ecabe5cd0b7bcebccb71c474ccab7908447127f34454b7e1256663
PageCount 8
ParticipantIDs ieee_primary_10511096
PublicationCentury 2000
PublicationDate 2024-March-11
PublicationDateYYYYMMDD 2024-03-11
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-11
  day: 11
PublicationDecade 2020
PublicationTitle 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV)
PublicationTitleAbbrev ICICV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8732322
Snippet The growing popularity of cloud computing demands robust security measures. In the context of machine learning, this research work represents a novel method...
SourceID ieee
SourceType Publisher
StartPage 413
SubjectTerms Artificial neural networks
Classification algorithms
Cloud computing security
Cloud Security
Computational modeling
Deep Neural Network(DNN)
Feature extraction
Intrusion
Intrusion detection
Machine Learning
Machine learning algorithms
Random Forest(RF)
Title Cloud-based Intrusion Detection System using Various Machine Learning Techniques
URI https://ieeexplore.ieee.org/document/10511096
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1sT55UjPjNHrxuzMZN0pyjpRVaemhLbyW7O1tESQWTS3-9s5vUgiB4C3tJMkN4bzbvvQV4yK1IIykNj8vccOL_gpeEApzQXClD-IepMydPpuloIV9Xyaozq3svDCJ68RmG7tL_yzdb3bitMvrCExeQmfagR5Nba9bqXDm0_DguxsWS4Fy6vZLYpWJH3hl_ODXFg8bwBKb727VakfewqVWod7-SGP_9PKcQHPx5bPaDPGdwhNU5zIqPbWO4gyXDxpUzU1DN2TPWXm1VsTacnDml-4YtaUamoZ9NvJgSWZezumHzfajrVwCL4cu8GPHuvAT-JkRec6I2ZaKtxlyiLhUm2kQqUxqV1ioTWmaS-qWyPBpIwqQ4s1SqRKoMieXQGPN0Af1qW-ElsHhgsIyMtKUmQoU4ENYKLayhNyOGoK4gcOVYf7aRGOt9Ja7_WL-BY9cSJ94S4hb6VAO8IzSv1b3v4jcdq6Kp
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGWACRBHfeGB1iYOTNHOgaqCtOrRVtyq2zxUCpUikC7-es5NSCQmJLUqGJHeK3jvnvWeAu9SKOJDS8LBIDSf-L3hBKMAJzZUyhH8YO3PycBT3p_J5Hs0bs7r3wiCiF59hxx36f_lmpdduqYy-8MgFZMa7sEfAH4nartX4cujCfZ7l2YwAXbrVktDlYgfeG7_dN8XDRu8QRpsb1mqRt866Uh399SuL8d9PdATtrUOPjX-w5xh2sDyBcfa-WhvugMmwvHR2Cqo6e8TK661KVseTM6d1X7IZTck09rOhl1Mia5JWl2yyiXX9bMO09zTJ-rzZMYG_CpFWnMhNEWmrMZWoC4WRNoFKlEaltUqElomkjqkkDbqSUClMLJUqkipB4jk0yDycQqtclXgGLOwaLAIjbaGJUiF2hbVCC2vozYgjqHNou3IsPupQjMWmEhd_nL-F_f5kOFgM8tHLJRy49jgplxBX0KJ64DVhe6VufEe_AcePpfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Intelligent+Communication+Technologies+and+Virtual+Mobile+Networks+%28ICICV%29&rft.atitle=Cloud-based+Intrusion+Detection+System+using+Various+Machine+Learning+Techniques&rft.au=R%2C+Arthi&rft.au=Das%2C+Utkalika&rft.au=AK%2C+Dhayaa+Ranjjan&rft.au=Balachandar%2C+N&rft.date=2024-03-11&rft.pub=IEEE&rft.spage=413&rft.epage=420&rft_id=info:doi/10.1109%2FICICV62344.2024.00071&rft.externalDocID=10511096