Interactive Technology of Electrothermal Collaborative System Considering Demand Response Scenario

Energy construction in typical regions is an important measure to realize energy reform. It is necessary to achieve clean and low-carbon utilization of energy, implement coal reduction and substitution, and encourage the construction of comprehensive energy projects coordinated by multiple energy so...

Full description

Saved in:
Bibliographic Details
Published in2022 8th International Conference on Control Science and Systems Engineering (ICCSSE) pp. 154 - 158
Main Authors Chen, Tao, Yao, YunTing, Wang, Chao liang, Li, Lei, Liu, Wei, Wei, YinWu
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.07.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCSSE55346.2022.10079732

Cover

Loading…
Abstract Energy construction in typical regions is an important measure to realize energy reform. It is necessary to achieve clean and low-carbon utilization of energy, implement coal reduction and substitution, and encourage the construction of comprehensive energy projects coordinated by multiple energy sources such as electricity, heat, cold and gas. Considering the residents' participation in the demand response interaction in the electrothermal collaborative system, this paper first constructs the demand response interaction framework under the scenario of electrothermal collaborative system, then completes the modeling of the main equipment of residents' users, and finally uses the neural network algorithm to predict the demand response potential based on Residents' power consumption behavior, so as to improve the efficiency of users' participation in demand response in the electrothermal collaborative system.
AbstractList Energy construction in typical regions is an important measure to realize energy reform. It is necessary to achieve clean and low-carbon utilization of energy, implement coal reduction and substitution, and encourage the construction of comprehensive energy projects coordinated by multiple energy sources such as electricity, heat, cold and gas. Considering the residents' participation in the demand response interaction in the electrothermal collaborative system, this paper first constructs the demand response interaction framework under the scenario of electrothermal collaborative system, then completes the modeling of the main equipment of residents' users, and finally uses the neural network algorithm to predict the demand response potential based on Residents' power consumption behavior, so as to improve the efficiency of users' participation in demand response in the electrothermal collaborative system.
Author Wei, YinWu
Chen, Tao
Wang, Chao liang
Liu, Wei
Li, Lei
Yao, YunTing
Author_xml – sequence: 1
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  email: 825665268@qq.com
  organization: School of Electrical Engineering Southeast University,Nanjing,China
– sequence: 2
  givenname: YunTing
  surname: Yao
  fullname: Yao, YunTing
  email: 1401963198@qq.com
  organization: School of Electrical Engineering Southeast University,Nanjing,China
– sequence: 3
  givenname: Chao liang
  surname: Wang
  fullname: Wang, Chao liang
  email: chaoliangwang@126.om
  organization: State Grid Zhejiang Electric Power Co., Ltd.,Hangzhou,China
– sequence: 4
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  email: 837479430@qq.com
  organization: State Grid Zhejiang Electric Power Co., Ltd.,Hangzhou,China
– sequence: 5
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: lwei0714@163.com
  organization: State Grid Zhejiang Electric Power Co., Ltd.,Hangzhou,China
– sequence: 6
  givenname: YinWu
  surname: Wei
  fullname: Wei, YinWu
  email: 2924479890@qq.com
  organization: China Electric Power Research Institute,Beijing,China
BookMark eNo1j81KxDAUhSPowhl9Axf1AVrz06TtUmrVwoBgx_Vw09zOBNpkSIPQt7eoszkHPj4OnA25dt4hIY-MZozR6qmt665rpBS5yjjlPGOUFlUh-BXZMKVkXuZMqFuiWxcxQB_tNyZ77E_Oj_64JH5ImhH7GHw8YZhgTGo_jqB9gF-1W-aI0wrdbA0G647JC07gTPKJ83mlq9Kjg2D9HbkZYJzx_r-35Ou12dfv6e7jra2fd6llrIqp1EOPXJeGl1pQFNQoKHlpjDB6UNAXYISmXMIaA88NF0JJrCpRFFKzCsSWPPztWkQ8nIOdICyHy2_xA2vvVd4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSSE55346.2022.10079732
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665484136
9781665484138
EndPage 158
ExternalDocumentID 10079732
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-5bfce2b8d28b30e30d6a828dd3dbf6ac7ad3b025ab02f24d23365e993775b19a3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:13 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-5bfce2b8d28b30e30d6a828dd3dbf6ac7ad3b025ab02f24d23365e993775b19a3
PageCount 5
ParticipantIDs ieee_primary_10079732
PublicationCentury 2000
PublicationDate 2022-July-14
PublicationDateYYYYMMDD 2022-07-14
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-14
  day: 14
PublicationDecade 2020
PublicationTitle 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE)
PublicationTitleAbbrev ICCSSE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.803838
Snippet Energy construction in typical regions is an important measure to realize energy reform. It is necessary to achieve clean and low-carbon utilization of energy,...
SourceID ieee
SourceType Publisher
StartPage 154
SubjectTerms Collaboration
Demand response
demand response interaction
Electric potential
Electrothermal collaborative system
load model
neural network
Neural networks
potential prediction
Prediction algorithms
Predictive models
Regulation
Title Interactive Technology of Electrothermal Collaborative System Considering Demand Response Scenario
URI https://ieeexplore.ieee.org/document/10079732
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_ieBruzVp-vFcN6bgEOdgb-OSXEB0rUj74l9vkq4OBcGXUsrRhDvI3f1y9ztCblKTsygGDITJHHSjIQCjsgC1QSZTVOgbaR9myXQR3y_FctOs7nthENEXn2HoXv1dvq5U46CyobvRd-wyPdKzmVvbrLVLrje8mcO7opjPx0Lw2NUeMBZ28j8mp3jHMdkns27Jtl7kNWxqGarPX2yM_97TARlse_To47f3OSQ7WB4R6QE-8GcY3aLmtDJ03M67cfHeGt5osbW_FW15y2k3vdP-kN7iGkpNn9oaWiuisLR5dTUgi8n4uZgGmykKwUsU5XUgpFFW7ZlmmeQj5COdgE2ztOZamgRUCppLG_mAfRgWa8Z5ItCFLamQUQ78mPTLqsQTQo2AEUAWgVaOZFIDplkOSjOIY66S5JQMnIJW7y1RxqrTzdkf38_JnrOTg0qj-IL0648GL62Pr-WVt-0X2hSrjg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46QX1SceJvI_jabU2a_niuG5tuQ9wGexuX5AKia0W6F_96k3Z1KAi-lFDSNlxK7vLlvu8IuYtMwvwA0BMmdtCNBg-Mij3UBpmMUGFJpB2Nw_4seJiL-ZqsXnJhELFMPsOWa5Zn-TpXKweVtd2JvlOX2SY71vEHSUXX2iW3a-XM9iBNJ5OuEDxw2QeMteonftROKV1H74CM649WGSOvrVUhW-rzlx7jv0d1SJoblh59-vY_R2QLs2MiS4gPylWMbnBzmhvarSreuIhvCW803fwBtmulXE7r-p32hfQel5Bp-lxl0douCjO7s86bZNbrTtO-t66j4L34flJ4QhplDR9rFkveQd7RIdiNltZcSxOCikBzaWMfsBfDAs04DwW6wCUS0k-An5BGlmd4SqgR0AGIfdDKyUxqwChOQGkGQcBVGJ6RpjPQ4r2SyljUtjn_4_4N2etPR8PFcDB-vCD7bs4ccOoHl6RRfKzwynr8Ql6X8_wFBwSu3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+8th+International+Conference+on+Control+Science+and+Systems+Engineering+%28ICCSSE%29&rft.atitle=Interactive+Technology+of+Electrothermal+Collaborative+System+Considering+Demand+Response+Scenario&rft.au=Chen%2C+Tao&rft.au=Yao%2C+YunTing&rft.au=Wang%2C+Chao+liang&rft.au=Li%2C+Lei&rft.date=2022-07-14&rft.pub=IEEE&rft.spage=154&rft.epage=158&rft_id=info:doi/10.1109%2FICCSSE55346.2022.10079732&rft.externalDocID=10079732