Prioritization of Identified Data Science Use Cases in Industrial Manufacturing via C-EDIF Scoring

While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by p...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA) pp. 1 - 4
Main Authors Fischer, Raphael, Pauly, Andreas, Wilking, Rahel, Kini, Anoop, Graurock, David
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by proposing a generalized framework for ❨1❩ exploring companies for use cases and (2) prioritizing them via C-EDIF scoring. This novel approach allows to determine the business importance of any use case by considering the underlying evaluability, data situation, impact and infeasibility. Besides the theoretical framework, our work also provides real-world insights from applying C-EDIF scoring in an extensive use case exploration phase. These results stem from a strategic partnership between data scientists and Wilo SE, a renowned pump manufacturing company, where we successfully identified and rated opportunities for AI.
AbstractList While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by proposing a generalized framework for ❨1❩ exploring companies for use cases and (2) prioritizing them via C-EDIF scoring. This novel approach allows to determine the business importance of any use case by considering the underlying evaluability, data situation, impact and infeasibility. Besides the theoretical framework, our work also provides real-world insights from applying C-EDIF scoring in an extensive use case exploration phase. These results stem from a strategic partnership between data scientists and Wilo SE, a renowned pump manufacturing company, where we successfully identified and rated opportunities for AI.
Author Kini, Anoop
Fischer, Raphael
Graurock, David
Pauly, Andreas
Wilking, Rahel
Author_xml – sequence: 1
  givenname: Raphael
  surname: Fischer
  fullname: Fischer, Raphael
  email: raphael.fischer@udo.edu
  organization: TU Dortmund University,Dortmund,Germany
– sequence: 2
  givenname: Andreas
  surname: Pauly
  fullname: Pauly, Andreas
  email: andreas.pauly@udo.edu
  organization: TU Dortmund University,Dortmund,Germany
– sequence: 3
  givenname: Rahel
  surname: Wilking
  fullname: Wilking, Rahel
  email: rahel.wilking@udo.edu
  organization: TU Dortmund University,Dortmund,Germany
– sequence: 4
  givenname: Anoop
  surname: Kini
  fullname: Kini, Anoop
  email: anoop.kini@wilo.com
  organization: Wilo SE,Dortmund,Germany
– sequence: 5
  givenname: David
  surname: Graurock
  fullname: Graurock, David
  email: david.graurock@wilo.com
  organization: Wilo SE,Dortmund,Germany
BookMark eNo1j81Kw0AUhUfQhda-geC8QOL8ZJKZZUhbDVQUatflJnNHLtSJJBNBn96Kujgc-OB8cK7YeRwiMnYrRS6lcHerXV2XwtkqV0LpXAotVKnVGVu6yllthC5OUZesex5pGCnRFyQaIh8Cbz3GRIHQ8xUk4LueMPbI9xPyBiacOEXeRj9PaSQ48keIc4A-zSPFV_5BwJtsvWo3p-Hwg67ZRYDjhMu_XrD9Zv3SPGTbp_u2qbcZSelSZlzXVWiUQgeVtEGFznrhe2m17o311htUBXRlUWJXGO9k0KK0FXpA47TTC3bz6yVEPLyP9Abj5-H_uv4GAJ1TqQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DSAA60987.2023.10302632
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEEXplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISBN 9798350345032
EndPage 4
ExternalDocumentID 10302632
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education
  funderid: 10.13039/100010002
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-59bb7e522e9a718f2fb8d0dc1833c58d8d5e24ab646eb45d91f30687edae59393
IEDL.DBID RIE
IngestDate Tue Jun 25 17:23:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-59bb7e522e9a718f2fb8d0dc1833c58d8d5e24ab646eb45d91f30687edae59393
PageCount 4
ParticipantIDs ieee_primary_10302632
PublicationCentury 2000
PublicationDate 2023-Oct.-9
PublicationDateYYYYMMDD 2023-10-09
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA)
PublicationTitleAbbrev DSAA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.908903
Snippet While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms application
Artificial intelligence
Business
Companies
Data science
exploration
Industries
industry transfer
Manufacturing
prioritization
Task analysis
Title Prioritization of Identified Data Science Use Cases in Industrial Manufacturing via C-EDIF Scoring
URI https://ieeexplore.ieee.org/document/10302632
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LasMwEBRNDqWnvlL6Rode7dixJFvHkAdpISHQBnILkrUCU7BLYufQr68k2w0tFHozxsJGyzK78swOQk_MHq0FKvUSQYhHJDU5R63YnVOiiAF4cJT_-YLNVuRlTdeNWN1pYQDAkc_At5fuX74q0soelfWtJZadL95BnZjzWqzVcLbCgPfHr8MhC0wT7VtPcL99-odvioON6SlatC-s2SLvflVKP_38NYvx3190hnoHhR5efmPPOTqC_AIdtyz2SySX26yw84pqlSUuNK4ludqUnHgsSoGbrMarHeCRwbIdznJ8cPLAc5FXVvbgdIx4nwk88ibj56lZ6Eh7PbSaTt5GM6-xU_CyMOSlR7mUMZh6C7gwiKQHWibKhMkkdZTSRCWKwoAIyQgDSajioTb9RBKDEkB5xKMr1M2LHK4RDiiQmMo4hVASGTChozQynUdi6rlIc3aDenavNh_1xIxNu023f9y_Qyc2ZI4kx-9Rt9xW8GDAvpSPLshfHJWpOg
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da4MwFA1bB9ue9tWx7-Vhr1qtiZrH0g_s1pbCWuhbScwVZKCj1T3s1y-JurLBYG8iBiWXy7k3nnMPQk--PlpzZGyFnBCLCKpyjmqxO6NEEgXwYCj_05kfLcnziq5qsbrRwgCAIZ-BrS_Nv3yZx6U-KutoSyw9X3wfHVBdWFRyrZq15TqsM3jt9XxHtdG2dgW3m-d_OKcY4BidoFnzyoov8maXhbDjz1_TGP_9TaeovdPo4fk3-pyhPcjO0WHDY79AYr5Jcz2xqNJZ4jzBlSg3UUUnHvCC4zqv8XILuK_QbIvTDO-8PPCUZ6UWPhglI_5IOe5bw8F4pBYa2l4bLUfDRT-yakMFK3VdVliUCRGAqriAcYVJSTcRoVSBUmntxTSUoaTQJVz4xAdBqGRuojqKMADJgTKPeZeoleUZXCHsUCABFUEMriDC8XnixZ7qPUJV0XkJ869RW-_V-r2ambFutunmj_uP6ChaTCfryXj2couOdfgMZY7doVaxKeFeQX8hHkzAvwAnSqyH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+10th+International+Conference+on+Data+Science+and+Advanced+Analytics+%28DSAA%29&rft.atitle=Prioritization+of+Identified+Data+Science+Use+Cases+in+Industrial+Manufacturing+via+C-EDIF+Scoring&rft.au=Fischer%2C+Raphael&rft.au=Pauly%2C+Andreas&rft.au=Wilking%2C+Rahel&rft.au=Kini%2C+Anoop&rft.date=2023-10-09&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FDSAA60987.2023.10302632&rft.externalDocID=10302632