Prioritization of Identified Data Science Use Cases in Industrial Manufacturing via C-EDIF Scoring
While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by p...
Saved in:
Published in | 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA) pp. 1 - 4 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by proposing a generalized framework for ❨1❩ exploring companies for use cases and (2) prioritizing them via C-EDIF scoring. This novel approach allows to determine the business importance of any use case by considering the underlying evaluability, data situation, impact and infeasibility. Besides the theoretical framework, our work also provides real-world insights from applying C-EDIF scoring in an extensive use case exploration phase. These results stem from a strategic partnership between data scientists and Wilo SE, a renowned pump manufacturing company, where we successfully identified and rated opportunities for AI. |
---|---|
AbstractList | While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it to good use requires to understand the domain challenges and identify opportunities for deploying AI. Our work aims at solving this task by proposing a generalized framework for ❨1❩ exploring companies for use cases and (2) prioritizing them via C-EDIF scoring. This novel approach allows to determine the business importance of any use case by considering the underlying evaluability, data situation, impact and infeasibility. Besides the theoretical framework, our work also provides real-world insights from applying C-EDIF scoring in an extensive use case exploration phase. These results stem from a strategic partnership between data scientists and Wilo SE, a renowned pump manufacturing company, where we successfully identified and rated opportunities for AI. |
Author | Kini, Anoop Fischer, Raphael Graurock, David Pauly, Andreas Wilking, Rahel |
Author_xml | – sequence: 1 givenname: Raphael surname: Fischer fullname: Fischer, Raphael email: raphael.fischer@udo.edu organization: TU Dortmund University,Dortmund,Germany – sequence: 2 givenname: Andreas surname: Pauly fullname: Pauly, Andreas email: andreas.pauly@udo.edu organization: TU Dortmund University,Dortmund,Germany – sequence: 3 givenname: Rahel surname: Wilking fullname: Wilking, Rahel email: rahel.wilking@udo.edu organization: TU Dortmund University,Dortmund,Germany – sequence: 4 givenname: Anoop surname: Kini fullname: Kini, Anoop email: anoop.kini@wilo.com organization: Wilo SE,Dortmund,Germany – sequence: 5 givenname: David surname: Graurock fullname: Graurock, David email: david.graurock@wilo.com organization: Wilo SE,Dortmund,Germany |
BookMark | eNo1j81Kw0AUhUfQhda-geC8QOL8ZJKZZUhbDVQUatflJnNHLtSJJBNBn96Kujgc-OB8cK7YeRwiMnYrRS6lcHerXV2XwtkqV0LpXAotVKnVGVu6yllthC5OUZesex5pGCnRFyQaIh8Cbz3GRIHQ8xUk4LueMPbI9xPyBiacOEXeRj9PaSQ48keIc4A-zSPFV_5BwJtsvWo3p-Hwg67ZRYDjhMu_XrD9Zv3SPGTbp_u2qbcZSelSZlzXVWiUQgeVtEGFznrhe2m17o311htUBXRlUWJXGO9k0KK0FXpA47TTC3bz6yVEPLyP9Abj5-H_uv4GAJ1TqQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DSAA60987.2023.10302632 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEEXplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISBN | 9798350345032 |
EndPage | 4 |
ExternalDocumentID | 10302632 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education funderid: 10.13039/100010002 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-59bb7e522e9a718f2fb8d0dc1833c58d8d5e24ab646eb45d91f30687edae59393 |
IEDL.DBID | RIE |
IngestDate | Tue Jun 25 17:23:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-59bb7e522e9a718f2fb8d0dc1833c58d8d5e24ab646eb45d91f30687edae59393 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10302632 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-9 |
PublicationDateYYYYMMDD | 2023-10-09 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA) |
PublicationTitleAbbrev | DSAA |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.908903 |
Snippet | While data science and artificial intelligence (AI) can be highly beneficial for industrial manufacturers, it is not yet readily usable. Therefore, putting it... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | application Artificial intelligence Business Companies Data science exploration Industries industry transfer Manufacturing prioritization Task analysis |
Title | Prioritization of Identified Data Science Use Cases in Industrial Manufacturing via C-EDIF Scoring |
URI | https://ieeexplore.ieee.org/document/10302632 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LasMwEBRNDqWnvlL6Rode7dixJFvHkAdpISHQBnILkrUCU7BLYufQr68k2w0tFHozxsJGyzK78swOQk_MHq0FKvUSQYhHJDU5R63YnVOiiAF4cJT_-YLNVuRlTdeNWN1pYQDAkc_At5fuX74q0soelfWtJZadL95BnZjzWqzVcLbCgPfHr8MhC0wT7VtPcL99-odvioON6SlatC-s2SLvflVKP_38NYvx3190hnoHhR5efmPPOTqC_AIdtyz2SySX26yw84pqlSUuNK4ludqUnHgsSoGbrMarHeCRwbIdznJ8cPLAc5FXVvbgdIx4nwk88ibj56lZ6Eh7PbSaTt5GM6-xU_CyMOSlR7mUMZh6C7gwiKQHWibKhMkkdZTSRCWKwoAIyQgDSajioTb9RBKDEkB5xKMr1M2LHK4RDiiQmMo4hVASGTChozQynUdi6rlIc3aDenavNh_1xIxNu023f9y_Qyc2ZI4kx-9Rt9xW8GDAvpSPLshfHJWpOg |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da4MwFA1bB9ue9tWx7-Vhr1qtiZrH0g_s1pbCWuhbScwVZKCj1T3s1y-JurLBYG8iBiWXy7k3nnMPQk--PlpzZGyFnBCLCKpyjmqxO6NEEgXwYCj_05kfLcnziq5qsbrRwgCAIZ-BrS_Nv3yZx6U-KutoSyw9X3wfHVBdWFRyrZq15TqsM3jt9XxHtdG2dgW3m-d_OKcY4BidoFnzyoov8maXhbDjz1_TGP_9TaeovdPo4fk3-pyhPcjO0WHDY79AYr5Jcz2xqNJZ4jzBlSg3UUUnHvCC4zqv8XILuK_QbIvTDO-8PPCUZ6UWPhglI_5IOe5bw8F4pBYa2l4bLUfDRT-yakMFK3VdVliUCRGAqriAcYVJSTcRoVSBUmntxTSUoaTQJVz4xAdBqGRuojqKMADJgTKPeZeoleUZXCHsUCABFUEMriDC8XnixZ7qPUJV0XkJ869RW-_V-r2ambFutunmj_uP6ChaTCfryXj2couOdfgMZY7doVaxKeFeQX8hHkzAvwAnSqyH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+10th+International+Conference+on+Data+Science+and+Advanced+Analytics+%28DSAA%29&rft.atitle=Prioritization+of+Identified+Data+Science+Use+Cases+in+Industrial+Manufacturing+via+C-EDIF+Scoring&rft.au=Fischer%2C+Raphael&rft.au=Pauly%2C+Andreas&rft.au=Wilking%2C+Rahel&rft.au=Kini%2C+Anoop&rft.date=2023-10-09&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FDSAA60987.2023.10302632&rft.externalDocID=10302632 |