From Tweets to Insights: BERT-Enhanced Models for Cyberbullying Detection

The rapid rise of social media usage, particularly during the COVID-19 pandemic, has amplified the prevalence of cyberbullying, necessitating effective detection and prevention measures. This research explores the application of sentiment analysis (SA) and deep learning models, specifically utilizin...

Full description

Saved in:
Bibliographic Details
Published in2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) pp. 1289 - 1293
Main Authors Sen, Madhura, Masih, Jolly, Rajasekaran, Rajkumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid rise of social media usage, particularly during the COVID-19 pandemic, has amplified the prevalence of cyberbullying, necessitating effective detection and prevention measures. This research explores the application of sentiment analysis (SA) and deep learning models, specifically utilizing Bidirectional Encoder Representations from Transformers (BERT) in combination with Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP), to automatically detect cyberbullying in Twitter posts. The study utilizes a Hate Speech and Offensive Language dataset, employing data preprocessing techniques and exploratory data analysis to address imbalances and understand the dataset's intricacies. The proposed architecture demonstrates superior performance, achieving an accuracy range of 87.2% to 92.3%, outperforming existing methods such as Naive Bayes, Support Vector Machine (SVM), Deep Neural Network (DNN), and CNN. The research contributes to the ongoing efforts to develop robust cyberbullying detection systems, emphasizing the need for proactive measures in the face of escalating online harassment incidents, especially in the COVID-19 era.
AbstractList The rapid rise of social media usage, particularly during the COVID-19 pandemic, has amplified the prevalence of cyberbullying, necessitating effective detection and prevention measures. This research explores the application of sentiment analysis (SA) and deep learning models, specifically utilizing Bidirectional Encoder Representations from Transformers (BERT) in combination with Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP), to automatically detect cyberbullying in Twitter posts. The study utilizes a Hate Speech and Offensive Language dataset, employing data preprocessing techniques and exploratory data analysis to address imbalances and understand the dataset's intricacies. The proposed architecture demonstrates superior performance, achieving an accuracy range of 87.2% to 92.3%, outperforming existing methods such as Naive Bayes, Support Vector Machine (SVM), Deep Neural Network (DNN), and CNN. The research contributes to the ongoing efforts to develop robust cyberbullying detection systems, emphasizing the need for proactive measures in the face of escalating online harassment incidents, especially in the COVID-19 era.
Author Masih, Jolly
Sen, Madhura
Rajasekaran, Rajkumar
Author_xml – sequence: 1
  givenname: Madhura
  orcidid: 0009-0006-1806-5592
  surname: Sen
  fullname: Sen, Madhura
  organization: School of Computer Science and Engineering, Vellore Institute of Technology,Vellore,India
– sequence: 2
  givenname: Jolly
  surname: Masih
  fullname: Masih, Jolly
  email: jolly.masih@bml.edu.in
  organization: BML Munjal University,Gurgaon,India
– sequence: 3
  givenname: Rajkumar
  surname: Rajasekaran
  fullname: Rajasekaran, Rajkumar
  email: vitrajkumar@gmail.com
  organization: School of Computer Science and Engineering, Vellore Institute of Technology,Vellore,India
BookMark eNo1j0FLwzAYQCPoQbf9Aw_Be2u-NGkbb1o7LWwIrp5Hk3zdAl0ibUT67x2op3d7vHdDLn3wSMgdsBSAqfumqttds8tBMplyxkUKTEiVF_yCrFShykyyrOCcq2vSrMdwou03YpxoDLTxkzsc4_RAn-r3Nqn9sfMGLd0Gi8NE-zDSatY46q9hmJ0_0GeMaKILfkmu-m6YcPXHBflY1231mmzeXprqcZM4ABUTKYTklkubQwm55p1gulTGdllvtJRgrTZaq0IUBkyfa9DluVaUveLIpMBsQW5_vQ4R95-jO3XjvP8_zH4A3yVLqQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICETSIS61505.2024.10459672
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350372229
EndPage 1293
ExternalDocumentID 10459672
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-54452d25d61816b2a40b89cda3fcb551ddbcbb9747c1cf6b1b850348f92e054e3
IEDL.DBID RIE
IngestDate Wed May 01 11:50:06 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-54452d25d61816b2a40b89cda3fcb551ddbcbb9747c1cf6b1b850348f92e054e3
ORCID 0009-0006-1806-5592
PageCount 5
ParticipantIDs ieee_primary_10459672
PublicationCentury 2000
PublicationDate 2024-Jan.-28
PublicationDateYYYYMMDD 2024-01-28
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)
PublicationTitleAbbrev ICETSIS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8612783
Snippet The rapid rise of social media usage, particularly during the COVID-19 pandemic, has amplified the prevalence of cyberbullying, necessitating effective...
SourceID ieee
SourceType Publisher
StartPage 1289
SubjectTerms Bidirectional control
Blogs
COVID-19
Cyberbullying
Deep Learning
Natural Language Processing
Sentiment analysis
Support vector machines
Transformers
Title From Tweets to Insights: BERT-Enhanced Models for Cyberbullying Detection
URI https://ieeexplore.ieee.org/document/10459672
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-pbZq0jUdnhxUc4jrYbSzJK4qzlTVD9K83yTZFQfBWAqXhJc333sv7vofQOU0ruxVCQYQSQFisQ5JZ2CF6CrFKACyiuNTA3SC5GbHbMR-vyOqeCwMAvvgMAvfo7_J1oxYuVWb_cMZFktoTd9NGbkuy1kpINArFRdHLy2ExdBLn3EZ-lAXrF360TvHI0d9Gg_U3lwUjz8HCyEB9_JJj_PekdlD3m6SH77_gZxdtQL2Hiv68ecHlG4BpsWlwUbcu-m4v8VX-UJK8fvQ3_ti1QJu12HqsuPcunWlnM0d4wtdgfHFW3UWjfl72bsiqWwJ5iiJhiFPVoZpynVjQTiSdslBmQulpXClp_SKtpZLShQ8qUlUiI5nxMGZZJShYvw3ifdSpmxoOEE5TLaCyrpQ9CJlKlaBcSohDxXkWV1Qeoq6zw-R1KYgxWZvg6I_xY7TllsNlLmh2gjpmvoBTi-VGnvk1_AQI3J6w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_Ca2qZN23h0dqy6DXEd7DaW5BVls5W1Q_SvN8k2RUHwVgKl4SXN997L-76H0CWNcr0VXE645EACX7kk1rBD1AR8GQJoRDGpgV4_7AyDuxEbrcjqlgsDALb4DBzzaO_yVSkXJlWm__CA8TDSJ-6mBn7mLelaKylRz-VXaSvJBunAiJwzHfvRwFm_8qN5isWO9g7qr7-6LBmZOotaOPLjlyDjv6e1i5rfND388AVAe2gDin2UtuflC87eAOoK1yVOi8rE39U1vkkeM5IUT_bOH5smaLMKa58Vt96FMe5sZihP-BZqW55VNNGwnWStDln1SyDPnsdrYnR1qKJMhRq2Q0EngStiLtXEz6XQ5lJKSCFMACE9mYfCEzFz_SDOOQXtuYF_gBpFWcAhwlGkOOTamdJHYSAjySkTAnxXMhb7ORVHqGnsMH5dSmKM1yY4_mP8Am11sl533E379ydo2yyNyWPQ-BQ16vkCzjSy1-Lcrucnghah-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+ASU+International+Conference+in+Emerging+Technologies+for+Sustainability+and+Intelligent+Systems+%28ICETSIS%29&rft.atitle=From+Tweets+to+Insights%3A+BERT-Enhanced+Models+for+Cyberbullying+Detection&rft.au=Sen%2C+Madhura&rft.au=Masih%2C+Jolly&rft.au=Rajasekaran%2C+Rajkumar&rft.date=2024-01-28&rft.pub=IEEE&rft.spage=1289&rft.epage=1293&rft_id=info:doi/10.1109%2FICETSIS61505.2024.10459672&rft.externalDocID=10459672