Automated Quality Control System for Canned Tuna Production using Artificial Vision
This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans a...
Saved in:
Published in | 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.05.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/AIIoT58432.2024.10574669 |
Cover
Abstract | This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans according to their condition. Industry 4.0 integration is achieved through an IoT system using Mosquitto, Node-RED, InfluxDB, and Grafana. The YOLOv5 model is employed to detect faults in the metal can lids and the positioning of the easy-open ring. Training with GPU on Google Colab enables OCR text detection on the labels. The results indicate efficient real-time problem identification, optimization of resources, and delivery of quality products. At the same time, the vision system contributes to autonomy in quality control tasks, freeing operators to perform other functions within the company. |
---|---|
AbstractList | This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans according to their condition. Industry 4.0 integration is achieved through an IoT system using Mosquitto, Node-RED, InfluxDB, and Grafana. The YOLOv5 model is employed to detect faults in the metal can lids and the positioning of the easy-open ring. Training with GPU on Google Colab enables OCR text detection on the labels. The results indicate efficient real-time problem identification, optimization of resources, and delivery of quality products. At the same time, the vision system contributes to autonomy in quality control tasks, freeing operators to perform other functions within the company. |
Author | Given, Wilson Galdea Gonzalez Jimenez, Luis Chuquimarca Enderica, Carlos Saldana Gonza'Lez, Sendey Vera Noboa, Bremnen Veliz |
Author_xml | – sequence: 1 givenname: Sendey Vera surname: Gonza'Lez fullname: Gonza'Lez, Sendey Vera email: svera@upse.edu.ec organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador – sequence: 2 givenname: Luis Chuquimarca surname: Jimenez fullname: Jimenez, Luis Chuquimarca email: lchuquimarca@upse.edu.ec organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador – sequence: 3 givenname: Wilson Galdea Gonzalez surname: Given fullname: Given, Wilson Galdea Gonzalez email: wilson.galdeagonzalez@upse.edu.ec organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador – sequence: 4 givenname: Bremnen Veliz surname: Noboa fullname: Noboa, Bremnen Veliz email: bveliz@upse.edu.ec organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador – sequence: 5 givenname: Carlos Saldana surname: Enderica fullname: Enderica, Carlos Saldana email: csaldana@upse.edu.ec organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador |
BookMark | eNo1j8tKxDAYRiPoQsd5Axd5gdb8uTbLUrwUBkaZ6nbINIkE2kTSdDFv74C6-uBwOPDdoeuYokMIA6kBiH5s-z4NouGM1pRQXgMRikupr9BWK90wQZiiQMktOrRrSbMpzuL31UyhnHGXYslpwofzUtyMfcq4MzFejGGNBr_lZNexhBTxuoT4hdtcgg9jMBP-DMuF36Mbb6bFbf92gz6en4butdrtX_qu3VUBQJdKUC81qMZwCSfhibJmZIx7L5wS3lDrJJWNJF5aMLxp3MiMZPoEFviolGAb9PDbDc6543cOs8nn4_9X9gOMb099 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIIoT58432.2024.10574669 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350372120 |
EndPage | 6 |
ExternalDocumentID | 10574669 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-52f69178a461b5f07dac334ff5e75fa2de626860f6d1a488ec3a639b1d14c7753 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 10 10:27:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-52f69178a461b5f07dac334ff5e75fa2de626860f6d1a488ec3a639b1d14c7753 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10574669 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-3 |
PublicationDateYYYYMMDD | 2024-05-03 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) |
PublicationTitleAbbrev | AIIoT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8713487 |
Snippet | This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial Vision Convolutional Neural Networks Graphics processing units Metals OCR Recognition Optical character recognition Text detection Text recognition Training YOLO YOLOv5 |
Title | Automated Quality Control System for Canned Tuna Production using Artificial Vision |
URI | https://ieeexplore.ieee.org/document/10574669 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bpU2atccxHJvgENxkt5EfLyJCK6M96F_vS7oqCoK3UkoakrTve8n3fY-QG2CZdpnTUTpyLEJELKKc5zbKtbKMOc1N0HHfL-RsJe7W2XonVg9aGAAI5DOI_WU4y7eVafxW2dDXpBVSFj3Sw3XWirU6dg4rhuP5vFpiQOVeYJWKuHv8R-GUEDemB2TRvbGli7zGTa1j8_HLjPHfXTokg2-JHn34Cj5HZA_KY_I4buoKIShY2npjvNNJS0WnrTM5RYhKJ8r_W-myKZVvwrb-sdQz4J_peBvIQ7gq6VOQnQ_Ianq7nMyiXdWE6CVJihozSycxB8uVkInOHBtZZTgXzmUwypxKLWAOk0vmpE0Ufr5guEKYohObCDPC7OWE9MuqhFNCBVNcA2I8UNiaNBoShXDGiLywjqf5GRn4Edm8tcYYm24wzv-4f0H2_cQEviC_JP1628AVxvRaX4e5_ARul6OK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06D3pSceJvc_DaLl3StD2O4dh0G4Kd7DbyU0RoZbQH_ev9kq6KguCtFJqWpO17X_ve-xC6MSSWNrYy6CeWBMCIWZDSVAepFJoQK6nyPu7ZnI8X7G4ZLzdmde-FMcZ48ZkJ3ab_l69LVbtPZT3Xk5Zxnm2jHQB-Fjd2rVafQ7LeYDIpc4BU6ixWfRa2B_xoneKRY7SP5u05G8HIa1hXMlQfv-IY_31RB6j7bdLDD1_wc4i2THGEHgd1VQIJNRo36RjveNiI0XGTTY6BpOKhcG9XnNeFcEPoJkEWOw38Mx6svXwI7kv85I3nXbQY3ebDcbDpmxC8RFFWQW1pOVRhqWA8krEliRaKUmZtbJLYir42UMWknFiuIwEPsFFUAFGRkY6YSqB-OUadoizMCcKMCCoNsDwjYDSupIkEEBrF0kxb2k9PUdfNyOqticZYtZNx9sf-a7Q7zmfT1XQyvz9He26RvHqQXqBOta7NJSB8Ja_8un4CLd2m1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+3rd+International+Conference+on+Artificial+Intelligence+For+Internet+of+Things+%28AIIoT%29&rft.atitle=Automated+Quality+Control+System+for+Canned+Tuna+Production+using+Artificial+Vision&rft.au=Gonza%27Lez%2C+Sendey+Vera&rft.au=Jimenez%2C+Luis+Chuquimarca&rft.au=Given%2C+Wilson+Galdea+Gonzalez&rft.au=Noboa%2C+Bremnen+Veliz&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAIIoT58432.2024.10574669&rft.externalDocID=10574669 |