Automated Quality Control System for Canned Tuna Production using Artificial Vision

This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans a...

Full description

Saved in:
Bibliographic Details
Published in2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) pp. 1 - 6
Main Authors Gonza'Lez, Sendey Vera, Jimenez, Luis Chuquimarca, Given, Wilson Galdea Gonzalez, Noboa, Bremnen Veliz, Enderica, Carlos Saldana
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.05.2024
Subjects
Online AccessGet full text
DOI10.1109/AIIoT58432.2024.10574669

Cover

Abstract This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans according to their condition. Industry 4.0 integration is achieved through an IoT system using Mosquitto, Node-RED, InfluxDB, and Grafana. The YOLOv5 model is employed to detect faults in the metal can lids and the positioning of the easy-open ring. Training with GPU on Google Colab enables OCR text detection on the labels. The results indicate efficient real-time problem identification, optimization of resources, and delivery of quality products. At the same time, the vision system contributes to autonomy in quality control tasks, freeing operators to perform other functions within the company.
AbstractList This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The system utilizes a conveyor belt and a camera for visual recognition triggered by a photoelectric sensor. A robotic arm classifies the metal cans according to their condition. Industry 4.0 integration is achieved through an IoT system using Mosquitto, Node-RED, InfluxDB, and Grafana. The YOLOv5 model is employed to detect faults in the metal can lids and the positioning of the easy-open ring. Training with GPU on Google Colab enables OCR text detection on the labels. The results indicate efficient real-time problem identification, optimization of resources, and delivery of quality products. At the same time, the vision system contributes to autonomy in quality control tasks, freeing operators to perform other functions within the company.
Author Given, Wilson Galdea Gonzalez
Jimenez, Luis Chuquimarca
Enderica, Carlos Saldana
Gonza'Lez, Sendey Vera
Noboa, Bremnen Veliz
Author_xml – sequence: 1
  givenname: Sendey Vera
  surname: Gonza'Lez
  fullname: Gonza'Lez, Sendey Vera
  email: svera@upse.edu.ec
  organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador
– sequence: 2
  givenname: Luis Chuquimarca
  surname: Jimenez
  fullname: Jimenez, Luis Chuquimarca
  email: lchuquimarca@upse.edu.ec
  organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador
– sequence: 3
  givenname: Wilson Galdea Gonzalez
  surname: Given
  fullname: Given, Wilson Galdea Gonzalez
  email: wilson.galdeagonzalez@upse.edu.ec
  organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador
– sequence: 4
  givenname: Bremnen Veliz
  surname: Noboa
  fullname: Noboa, Bremnen Veliz
  email: bveliz@upse.edu.ec
  organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador
– sequence: 5
  givenname: Carlos Saldana
  surname: Enderica
  fullname: Enderica, Carlos Saldana
  email: csaldana@upse.edu.ec
  organization: Facsistel Universidad Estatal Peninsula de Santa Elena,La Libertad,Ecuador
BookMark eNo1j8tKxDAYRiPoQsd5Axd5gdb8uTbLUrwUBkaZ6nbINIkE2kTSdDFv74C6-uBwOPDdoeuYokMIA6kBiH5s-z4NouGM1pRQXgMRikupr9BWK90wQZiiQMktOrRrSbMpzuL31UyhnHGXYslpwofzUtyMfcq4MzFejGGNBr_lZNexhBTxuoT4hdtcgg9jMBP-DMuF36Mbb6bFbf92gz6en4butdrtX_qu3VUBQJdKUC81qMZwCSfhibJmZIx7L5wS3lDrJJWNJF5aMLxp3MiMZPoEFviolGAb9PDbDc6543cOs8nn4_9X9gOMb099
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIIoT58432.2024.10574669
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350372120
EndPage 6
ExternalDocumentID 10574669
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-52f69178a461b5f07dac334ff5e75fa2de626860f6d1a488ec3a639b1d14c7753
IEDL.DBID RIE
IngestDate Wed Jul 10 10:27:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-52f69178a461b5f07dac334ff5e75fa2de626860f6d1a488ec3a639b1d14c7753
PageCount 6
ParticipantIDs ieee_primary_10574669
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT)
PublicationTitleAbbrev AIIoT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8713487
Snippet This work presents the implementation of an automated control system for detecting and classifying faults in tuna metal cans using artificial vision. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial Vision
Convolutional Neural Networks
Graphics processing units
Metals
OCR Recognition
Optical character recognition
Text detection
Text recognition
Training
YOLO
YOLOv5
Title Automated Quality Control System for Canned Tuna Production using Artificial Vision
URI https://ieeexplore.ieee.org/document/10574669
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bpU2atccxHJvgENxkt5EfLyJCK6M96F_vS7oqCoK3UkoakrTve8n3fY-QG2CZdpnTUTpyLEJELKKc5zbKtbKMOc1N0HHfL-RsJe7W2XonVg9aGAAI5DOI_WU4y7eVafxW2dDXpBVSFj3Sw3XWirU6dg4rhuP5vFpiQOVeYJWKuHv8R-GUEDemB2TRvbGli7zGTa1j8_HLjPHfXTokg2-JHn34Cj5HZA_KY_I4buoKIShY2npjvNNJS0WnrTM5RYhKJ8r_W-myKZVvwrb-sdQz4J_peBvIQ7gq6VOQnQ_Ianq7nMyiXdWE6CVJihozSycxB8uVkInOHBtZZTgXzmUwypxKLWAOk0vmpE0Ufr5guEKYohObCDPC7OWE9MuqhFNCBVNcA2I8UNiaNBoShXDGiLywjqf5GRn4Edm8tcYYm24wzv-4f0H2_cQEviC_JP1628AVxvRaX4e5_ARul6OK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06D3pSceJvc_DaLl3StD2O4dh0G4Kd7DbyU0RoZbQH_ev9kq6KguCtFJqWpO17X_ve-xC6MSSWNrYy6CeWBMCIWZDSVAepFJoQK6nyPu7ZnI8X7G4ZLzdmde-FMcZ48ZkJ3ab_l69LVbtPZT3Xk5Zxnm2jHQB-Fjd2rVafQ7LeYDIpc4BU6ixWfRa2B_xoneKRY7SP5u05G8HIa1hXMlQfv-IY_31RB6j7bdLDD1_wc4i2THGEHgd1VQIJNRo36RjveNiI0XGTTY6BpOKhcG9XnNeFcEPoJkEWOw38Mx6svXwI7kv85I3nXbQY3ebDcbDpmxC8RFFWQW1pOVRhqWA8krEliRaKUmZtbJLYir42UMWknFiuIwEPsFFUAFGRkY6YSqB-OUadoizMCcKMCCoNsDwjYDSupIkEEBrF0kxb2k9PUdfNyOqticZYtZNx9sf-a7Q7zmfT1XQyvz9He26RvHqQXqBOta7NJSB8Ja_8un4CLd2m1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+3rd+International+Conference+on+Artificial+Intelligence+For+Internet+of+Things+%28AIIoT%29&rft.atitle=Automated+Quality+Control+System+for+Canned+Tuna+Production+using+Artificial+Vision&rft.au=Gonza%27Lez%2C+Sendey+Vera&rft.au=Jimenez%2C+Luis+Chuquimarca&rft.au=Given%2C+Wilson+Galdea+Gonzalez&rft.au=Noboa%2C+Bremnen+Veliz&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAIIoT58432.2024.10574669&rft.externalDocID=10574669