An Approach to avoid SSS problem in the data space using Fisher Face(PCA+LDA ) technique: A Case Study on Chest X-ray Pneumonia data

Pneumonia is a complex disease with a multitude of factors influencing its development and progression. Analysing Pneumonia data can be challenging due to the high dimensionality and noise present in the data. This study presents a methodology for identifying hidden patterns in chest X-ray images of...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) pp. 1 - 6
Main Authors Rao, D. Rajeswara, Pathakamudi, Bhogeswar, Dakshayani, Reddi
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pneumonia is a complex disease with a multitude of factors influencing its development and progression. Analysing Pneumonia data can be challenging due to the high dimensionality and noise present in the data. This study presents a methodology for identifying hidden patterns in chest X-ray images of pneumonia patients using Fisher face technique, which uses both principal component analysis (PCA) and linear discriminant analysis (LDA) i.e pca+lda technique (Fisher face technique), as well as the Random Forest algorithm. The SSS (small sample size) problem is a well-known issue that can arise when using LDA (Linear Discriminant Analysis) for data analysis. This problem occurs when the number of variables (features) in the data is larger than the number of samples, leading to a situation where the covariance matrix cannot be estimated reliably PCA is used to reduce the dimensionality of the chest X-ray images by identifying the most relevant features, while LDA is used to further enhance the separation between classes. The Random Forest classification algorithm is then used to classify the chest X-ray images based on the extracted features.
AbstractList Pneumonia is a complex disease with a multitude of factors influencing its development and progression. Analysing Pneumonia data can be challenging due to the high dimensionality and noise present in the data. This study presents a methodology for identifying hidden patterns in chest X-ray images of pneumonia patients using Fisher face technique, which uses both principal component analysis (PCA) and linear discriminant analysis (LDA) i.e pca+lda technique (Fisher face technique), as well as the Random Forest algorithm. The SSS (small sample size) problem is a well-known issue that can arise when using LDA (Linear Discriminant Analysis) for data analysis. This problem occurs when the number of variables (features) in the data is larger than the number of samples, leading to a situation where the covariance matrix cannot be estimated reliably PCA is used to reduce the dimensionality of the chest X-ray images by identifying the most relevant features, while LDA is used to further enhance the separation between classes. The Random Forest classification algorithm is then used to classify the chest X-ray images based on the extracted features.
Author Dakshayani, Reddi
Pathakamudi, Bhogeswar
Rao, D. Rajeswara
Author_xml – sequence: 1
  givenname: D. Rajeswara
  surname: Rao
  fullname: Rao, D. Rajeswara
  email: hodcse@vrsiddharth.ac.in
  organization: Velagapudi Ramakrishna Siddhartha Engineering College,Computer Science and Engineering,India
– sequence: 2
  givenname: Bhogeswar
  surname: Pathakamudi
  fullname: Pathakamudi, Bhogeswar
  email: pathakamudibhogeswar@gmail.com
  organization: Velagapudi Ramakrishna Siddhartha Engineering College,Computer Science and Engineering,India
– sequence: 3
  givenname: Reddi
  surname: Dakshayani
  fullname: Dakshayani, Reddi
  email: dakshayanireddi2002@gmail.com
  organization: Velagapudi Ramakrishna Siddhartha Engineering College,Computer Science and Engineering,India
BookMark eNo1kM1Kw0AURkdRsNa-gYvrTpHUO3OnyYy7EFsVChai4K5Mk6kZaScxkwjd--AWf1bf4SzO4jtlR772lrELjmPOUd_k2XSa5TGXKMYChRxzlEpQTAdspBOtaIIklYzxkA1ErFSEQqkTNgrhHRFJICWoB-wr9ZA2TVubooKuBvNZuxLyPIe9W23sFpyHrrJQms5AaExhoQ_Ov8HMhcq2MNuby0WWXs_vUriCzhaVdx-9vYUUMhMs5F1f7qD2kFU2dPAatWYHC2_7be2d-emeseO12QQ7-tshe5lNn7OHaP50_5il88hxrrtogklSFFJzTaVaK-JCaF5SnBQaS7sqSp2QllaQMXyFyURQIjnFMqY9r_Wahuz8t-ustcumdVvT7pb_x9E38Mph1g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCEECS61402.2024.10482363
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 9798350348460
EISSN 2688-0288
EndPage 6
ExternalDocumentID 10482363
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-5077cc49193d8f8312291d367c90debcd97394e23aa1b0752374136463752f9f3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:40:55 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-5077cc49193d8f8312291d367c90debcd97394e23aa1b0752374136463752f9f3
PageCount 6
ParticipantIDs ieee_primary_10482363
PublicationCentury 2000
PublicationDate 2024-Feb.-24
PublicationDateYYYYMMDD 2024-02-24
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)
PublicationTitleAbbrev SCEECS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203709
Score 1.9101533
Snippet Pneumonia is a complex disease with a multitude of factors influencing its development and progression. Analysing Pneumonia data can be challenging due to the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Chest X-ray of Pneumonia dataset
Feature extraction
Forestry
Linear discriminant analysis
Noise
PCA+LDA technique(Fisher Face technique)
Pneumonia
Random Forest Algorithm
Reliability
SSS problem
X-ray imaging
Title An Approach to avoid SSS problem in the data space using Fisher Face(PCA+LDA ) technique: A Case Study on Chest X-ray Pneumonia data
URI https://ieeexplore.ieee.org/document/10482363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26h-GTt4l3PsEHRVrbJmsb30rdGKJjUAd7G81lUoRWRivMZ3-4X7puoiD4FgINIbfvJP3OOYRcMkUVF460XCm6FpN43Qm7jrBmaRfhiJQi0Ibg_DT0B2P2MOlOGrJ6zYXRWtfJZ9o2xfpfvipkZZ7KcIcz489NN8lmwPmSrLV-UKGeQwOHt8lFo6N5m8S9Xpxg_KkZVx6zV9__cFKpA0l_mwxXXVjmj7zaVSls-fFLnfHffdwhnW_OHozW0WiXbOh8j7SN86axc9snn1EOUSMgDmUB6XuRKUiSBBpPGchyQDQIJmcU8JzB9kxS_Ass3dGhjzVXozi6ebyP4BrW4q93EEGMsRBMSuICihxi48EFE2ueLmCU6wpXepbW7XbIuN97jgdWY8FgZa7LSwvRYiAl4wjzVDgLqet53FXUDyR3lBZS8YBypj2apq5A9OFRRCjUZz7F8ozP6AFp5UWuDwmE0hfCT42cM86IZlyFKQ0QcfmcUemrI9Ixozl9W6psTFcDefxH_QnZMpNa08vZKWmV80qfIUAoxXm9ML4Atbu3hg
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eYPrkbeLdI_igSGfbpJf4VurG1G0MqrC30VwmQ2hldII--8M96bqJguBbyMMhJGnPl-R830fIOVNUcWFLy5HCs5jE407o2cIapR7CESlFoA3Budvz20_sfuANKrJ6yYXRWpfFZ7phmuVbvsrl1FyV4RfOjD83XSarngEWM7rW4kqFujYNbF4jZ5WS5nUSN5txghmo5Fy5rDGP8MNLpUwlrQ3Smw9iVkHy0pgWoiE_fukz_nuUm6T-zdqD_iIfbZElnW2TmvHeNIZuO-QzyiCqJMShyCF9y8cKkiSBylUGxhkgHgRTNQr4p8F4piz-GWb-6NDCnot-HF11biO4hIX86w1EEGM2BFOU-A55BrFx4YKBNUnfoZ_pKe71cVrGrZOnVvMxbluVCYM1dhxeWIgXAykZR6CnwlFIHdfljqJ-ILmttJCKB5Qz7dI0dQTiD5ciRqE-8ym2R3xEd8lKlmd6j0AofSH81Ag644poxlWY0gAxl88Zlb7aJ3Uzm8PXmc7GcD6RB3_0n5K19mO3M-zc9R4OybpZ4JJszo7ISjGZ6mOEC4U4KTfJF4NJutM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Students%27+Conference+on+Electrical%2C+Electronics+and+Computer+Science+%28SCEECS%29&rft.atitle=An+Approach+to+avoid+SSS+problem+in+the+data+space+using+Fisher+Face%28PCA%2BLDA+%29+technique%3A+A+Case+Study+on+Chest+X-ray+Pneumonia+data&rft.au=Rao%2C+D.+Rajeswara&rft.au=Pathakamudi%2C+Bhogeswar&rft.au=Dakshayani%2C+Reddi&rft.date=2024-02-24&rft.pub=IEEE&rft.eissn=2688-0288&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSCEECS61402.2024.10482363&rft.externalDocID=10482363