Radio-Frequency Spintronic Neural Networks
Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in mul...
Saved in:
Published in | 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers) pp. 1 - 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in multilayers. We show that magnetic tunnel junctions can be used to connect spintronics components in multilayer neural networks, allowing them to function as both synapses and neurons. We build a two-layer hardware spintronic neural network using nine magnetic tunnel junctions and found that it could classify nonlinearly-separable RF inputs with an accuracy of 97.7%. We also demonstrate that a larger network of these junctions could identify drones from their RF transmissions while consuming minimal power. This study lays the foundation for the development of deep, dynamical, spintronic neural networks [1]. |
---|---|
AbstractList | Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in multilayers. We show that magnetic tunnel junctions can be used to connect spintronics components in multilayer neural networks, allowing them to function as both synapses and neurons. We build a two-layer hardware spintronic neural network using nine magnetic tunnel junctions and found that it could classify nonlinearly-separable RF inputs with an accuracy of 97.7%. We also demonstrate that a larger network of these junctions could identify drones from their RF transmissions while consuming minimal power. This study lays the foundation for the development of deep, dynamical, spintronic neural networks [1]. |
Author | Grollier, Julie Martins, Leandro Claro, Marcel S. Sanz-Hernandez, Dedalo Querlioz, Damien Ferreira, Ricardo Markovic, Danijela Vincent, Adrien F. Saighi, Sylvain Schulman, Alejandro Jenkins, Alex S. Trastoy, Juan de Riz, Arnaud Anacleto, Pedro Benetti, Luana Ross, Andrew Taris, Thierry Leroux, Nathan Bortolotti, Paolo Begueret, Jean-Baptiste Mizrahi, Alice |
Author_xml | – sequence: 1 givenname: Andrew surname: Ross fullname: Ross, Andrew organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 2 givenname: Nathan surname: Leroux fullname: Leroux, Nathan organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 3 givenname: Arnaud surname: de Riz fullname: de Riz, Arnaud organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 4 givenname: Danijela surname: Markovic fullname: Markovic, Danijela organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 5 givenname: Dedalo surname: Sanz-Hernandez fullname: Sanz-Hernandez, Dedalo organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 6 givenname: Juan surname: Trastoy fullname: Trastoy, Juan organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 7 givenname: Paolo surname: Bortolotti fullname: Bortolotti, Paolo organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 8 givenname: Damien surname: Querlioz fullname: Querlioz, Damien organization: Université Paris-Saclay, CNRS,Centre de Nanosciences et de Nanotechnologies,Palaiseau,France,91120 – sequence: 9 givenname: Leandro surname: Martins fullname: Martins, Leandro organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 10 givenname: Luana surname: Benetti fullname: Benetti, Luana organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 11 givenname: Marcel S. surname: Claro fullname: Claro, Marcel S. organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 12 givenname: Pedro surname: Anacleto fullname: Anacleto, Pedro organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 13 givenname: Alejandro surname: Schulman fullname: Schulman, Alejandro organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 14 givenname: Thierry surname: Taris fullname: Taris, Thierry organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France – sequence: 15 givenname: Jean-Baptiste surname: Begueret fullname: Begueret, Jean-Baptiste organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France – sequence: 16 givenname: Sylvain surname: Saighi fullname: Saighi, Sylvain organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France – sequence: 17 givenname: Alex S. surname: Jenkins fullname: Jenkins, Alex S. organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 18 givenname: Ricardo surname: Ferreira fullname: Ferreira, Ricardo organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31 – sequence: 19 givenname: Adrien F. surname: Vincent fullname: Vincent, Adrien F. organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France – sequence: 20 givenname: Alice surname: Mizrahi fullname: Mizrahi, Alice email: alice.mizrahi@cnrs-thales.fr organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 – sequence: 21 givenname: Julie surname: Grollier fullname: Grollier, Julie email: julie.grollier@cnrs-thales.fr organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767 |
BookMark | eNo1j8FOAjEURWuiC0X-wAVrkxlfW16nXRICSIJAANekU19jI7ZjZ4jh751EXZ27OLnJuWPXMUVirORQcg7mabk-zHYvk8X-PeVuaxvKLWoFqhQgZG8JoRHkFRuaymjZT6mlErfscWffQirmmb7OFN1ltG9C7HKKwY3WdM721KP7TvmjvWc33p5aGv5xwF7ns8P0uVhtFsvpZFUEzk1XICiDiqOBMdpx7TTqGrj0lfHOKyvIgxOVk0hgUSrQgKZ2BECVsB5RDtjD728gomOTw6fNl-N_gvwBielFFg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/INTERMAGShortPapers58606.2023.10228503 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350338362 |
EndPage | 2 |
ExternalDocumentID | 10228503 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-506956159045a4bc858b013f79fcf6a2ef0c27c35e0a53608059bce00e72af553 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:54 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-506956159045a4bc858b013f79fcf6a2ef0c27c35e0a53608059bce00e72af553 |
PageCount | 2 |
ParticipantIDs | ieee_primary_10228503 |
PublicationCentury | 2000 |
PublicationDate | 2023-May |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers) |
PublicationTitleAbbrev | INTERMAG |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8797526 |
Snippet | Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Biological neural networks Hardware Junctions magnetic tunnel junctions Nanoscale devices neural networks neuromorphic computing Neurons Nonhomogeneous media Radio frequency radio-frequency multiplexing Spintronics |
Title | Radio-Frequency Spintronic Neural Networks |
URI | https://ieeexplore.ieee.org/document/10228503 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvevAkpMuapG2OIs4hbAznYLfxkr7gULoyu4P-9SbppigInlICoU1yeN97_b7vEXKVWOGiuJVU50nmEpSMUZBQUOQIohBcC-PrkINh2p-Ih6mcrsXqQQuDiIF8hrF_DP_yi4VZ-VJZx2cnufTentuZUo1Ya4fEa9_MTjCRHdzcj58dch1B5fCTzB1Aj32L8Hiz-EcblRBFentkuHl_Qx55iVe1js3HL2vGf3_gPml_C_ai0VcoOiBbWB6S60co5gvaWzZs6fdoXM3LpuVN5D054NUNgQT-1iaT3t3TbZ-uWyPQeberaipZ6hWpUjlEBkKbXOa-oGkzZY1NIUHLTJIZLpGB5KmDhVJpg4xhloCVkh-RVrko8ZhEHFIAJbhFg4KDVsK6HEIbLUFBqtkJafuNzqrG_WK22ePpH_NnZNefd0MKPCeternCCxe4a30ZLuwTGOCZKw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1EQT2pWPHbHDwJm6bZjyRHEWvVthTbQm9ldjOLRUlLTQ_6693dtIqC4GnDQmA2e5g3k_feEHIZG26zuBFUpXFiC5QkoiAgp8gQeM6Z4tr1ITtd2Rryh5EYLcXqXguDiJ58hqF79P_y86leuFZZ3VUnqXDenhsWWKeykmttknDpnFn3NrKd67v-s8WuPZhZBCVSC9FDNyQ8XL3-Y5CKzyPNHdJdRVDRR17CRalC_fHLnPHfIe6S2rdkL-h9JaM9sobFPrl6gnwypc15xZd-D_qzSVENvQmcKwe82sXTwN9qZNi8Hdy06HI4Ap00GllJRSSdJlVkFpMBVzoVqWtpmiQz2kiI0UQ6TjQTGIFg0gJDkSmNUYRJDEYIdkDWi2mBhyRgIAEyzgxq5AxUxo2tIpRWAjKQKjoiNXfQ8azyvxivznj8x_4F2WoNOu1x-777eEK23bevKIKnZL2cL_DMpvFSnfvL-wRNGpx2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Magnetic+Conference+-+Short+Papers+%28INTERMAG+Short+Papers%29&rft.atitle=Radio-Frequency+Spintronic+Neural+Networks&rft.au=Ross%2C+Andrew&rft.au=Leroux%2C+Nathan&rft.au=de+Riz%2C+Arnaud&rft.au=Markovic%2C+Danijela&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FINTERMAGShortPapers58606.2023.10228503&rft.externalDocID=10228503 |