Radio-Frequency Spintronic Neural Networks

Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in mul...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers) pp. 1 - 2
Main Authors Ross, Andrew, Leroux, Nathan, de Riz, Arnaud, Markovic, Danijela, Sanz-Hernandez, Dedalo, Trastoy, Juan, Bortolotti, Paolo, Querlioz, Damien, Martins, Leandro, Benetti, Luana, Claro, Marcel S., Anacleto, Pedro, Schulman, Alejandro, Taris, Thierry, Begueret, Jean-Baptiste, Saighi, Sylvain, Jenkins, Alex S., Ferreira, Ricardo, Vincent, Adrien F., Mizrahi, Alice, Grollier, Julie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in multilayers. We show that magnetic tunnel junctions can be used to connect spintronics components in multilayer neural networks, allowing them to function as both synapses and neurons. We build a two-layer hardware spintronic neural network using nine magnetic tunnel junctions and found that it could classify nonlinearly-separable RF inputs with an accuracy of 97.7%. We also demonstrate that a larger network of these junctions could identify drones from their RF transmissions while consuming minimal power. This study lays the foundation for the development of deep, dynamical, spintronic neural networks [1].
AbstractList Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization dynamics. They have the potential to revolutionize artificial intelligence hardware, but currently, there is no scalable way to connect them in multilayers. We show that magnetic tunnel junctions can be used to connect spintronics components in multilayer neural networks, allowing them to function as both synapses and neurons. We build a two-layer hardware spintronic neural network using nine magnetic tunnel junctions and found that it could classify nonlinearly-separable RF inputs with an accuracy of 97.7%. We also demonstrate that a larger network of these junctions could identify drones from their RF transmissions while consuming minimal power. This study lays the foundation for the development of deep, dynamical, spintronic neural networks [1].
Author Grollier, Julie
Martins, Leandro
Claro, Marcel S.
Sanz-Hernandez, Dedalo
Querlioz, Damien
Ferreira, Ricardo
Markovic, Danijela
Vincent, Adrien F.
Saighi, Sylvain
Schulman, Alejandro
Jenkins, Alex S.
Trastoy, Juan
de Riz, Arnaud
Anacleto, Pedro
Benetti, Luana
Ross, Andrew
Taris, Thierry
Leroux, Nathan
Bortolotti, Paolo
Begueret, Jean-Baptiste
Mizrahi, Alice
Author_xml – sequence: 1
  givenname: Andrew
  surname: Ross
  fullname: Ross, Andrew
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 2
  givenname: Nathan
  surname: Leroux
  fullname: Leroux, Nathan
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 3
  givenname: Arnaud
  surname: de Riz
  fullname: de Riz, Arnaud
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 4
  givenname: Danijela
  surname: Markovic
  fullname: Markovic, Danijela
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 5
  givenname: Dedalo
  surname: Sanz-Hernandez
  fullname: Sanz-Hernandez, Dedalo
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 6
  givenname: Juan
  surname: Trastoy
  fullname: Trastoy, Juan
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 7
  givenname: Paolo
  surname: Bortolotti
  fullname: Bortolotti, Paolo
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 8
  givenname: Damien
  surname: Querlioz
  fullname: Querlioz, Damien
  organization: Université Paris-Saclay, CNRS,Centre de Nanosciences et de Nanotechnologies,Palaiseau,France,91120
– sequence: 9
  givenname: Leandro
  surname: Martins
  fullname: Martins, Leandro
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 10
  givenname: Luana
  surname: Benetti
  fullname: Benetti, Luana
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 11
  givenname: Marcel S.
  surname: Claro
  fullname: Claro, Marcel S.
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 12
  givenname: Pedro
  surname: Anacleto
  fullname: Anacleto, Pedro
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 13
  givenname: Alejandro
  surname: Schulman
  fullname: Schulman, Alejandro
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 14
  givenname: Thierry
  surname: Taris
  fullname: Taris, Thierry
  organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France
– sequence: 15
  givenname: Jean-Baptiste
  surname: Begueret
  fullname: Begueret, Jean-Baptiste
  organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France
– sequence: 16
  givenname: Sylvain
  surname: Saighi
  fullname: Saighi, Sylvain
  organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France
– sequence: 17
  givenname: Alex S.
  surname: Jenkins
  fullname: Jenkins, Alex S.
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 18
  givenname: Ricardo
  surname: Ferreira
  fullname: Ferreira, Ricardo
  organization: International Iberian Nanotechnology Laboratory (INL),Braga,Portugal,4715-31
– sequence: 19
  givenname: Adrien F.
  surname: Vincent
  fullname: Vincent, Adrien F.
  organization: Univ. Bordeaux, Bordeaux INP, CNRS,Laboratoire de l'Intégration du Matériau au Système,France
– sequence: 20
  givenname: Alice
  surname: Mizrahi
  fullname: Mizrahi, Alice
  email: alice.mizrahi@cnrs-thales.fr
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
– sequence: 21
  givenname: Julie
  surname: Grollier
  fullname: Grollier, Julie
  email: julie.grollier@cnrs-thales.fr
  organization: Université Paris Saclay,Unité Mixte de Physique CNRS/Thales, CNRS,Palaiseau,France,91767
BookMark eNo1j8FOAjEURWuiC0X-wAVrkxlfW16nXRICSIJAANekU19jI7ZjZ4jh751EXZ27OLnJuWPXMUVirORQcg7mabk-zHYvk8X-PeVuaxvKLWoFqhQgZG8JoRHkFRuaymjZT6mlErfscWffQirmmb7OFN1ltG9C7HKKwY3WdM721KP7TvmjvWc33p5aGv5xwF7ns8P0uVhtFsvpZFUEzk1XICiDiqOBMdpx7TTqGrj0lfHOKyvIgxOVk0hgUSrQgKZ2BECVsB5RDtjD728gomOTw6fNl-N_gvwBielFFg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INTERMAGShortPapers58606.2023.10228503
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350338362
EndPage 2
ExternalDocumentID 10228503
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-506956159045a4bc858b013f79fcf6a2ef0c27c35e0a53608059bce00e72af553
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:54 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-506956159045a4bc858b013f79fcf6a2ef0c27c35e0a53608059bce00e72af553
PageCount 2
ParticipantIDs ieee_primary_10228503
PublicationCentury 2000
PublicationDate 2023-May
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationTitle 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers)
PublicationTitleAbbrev INTERMAG
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8797526
Snippet Spintronic nano-synapses and nano-neurons are complex cognitive devices that have high accuracy due to their reproducible and controllable magnetization...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological neural networks
Hardware
Junctions
magnetic tunnel junctions
Nanoscale devices
neural networks
neuromorphic computing
Neurons
Nonhomogeneous media
Radio frequency
radio-frequency multiplexing
Spintronics
Title Radio-Frequency Spintronic Neural Networks
URI https://ieeexplore.ieee.org/document/10228503
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvevAkpMuapG2OIs4hbAznYLfxkr7gULoyu4P-9SbppigInlICoU1yeN97_b7vEXKVWOGiuJVU50nmEpSMUZBQUOQIohBcC-PrkINh2p-Ih6mcrsXqQQuDiIF8hrF_DP_yi4VZ-VJZx2cnufTentuZUo1Ya4fEa9_MTjCRHdzcj58dch1B5fCTzB1Aj32L8Hiz-EcblRBFentkuHl_Qx55iVe1js3HL2vGf3_gPml_C_ai0VcoOiBbWB6S60co5gvaWzZs6fdoXM3LpuVN5D054NUNgQT-1iaT3t3TbZ-uWyPQeberaipZ6hWpUjlEBkKbXOa-oGkzZY1NIUHLTJIZLpGB5KmDhVJpg4xhloCVkh-RVrko8ZhEHFIAJbhFg4KDVsK6HEIbLUFBqtkJafuNzqrG_WK22ePpH_NnZNefd0MKPCeternCCxe4a30ZLuwTGOCZKw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1EQT2pWPHbHDwJm6bZjyRHEWvVthTbQm9ldjOLRUlLTQ_6693dtIqC4GnDQmA2e5g3k_feEHIZG26zuBFUpXFiC5QkoiAgp8gQeM6Z4tr1ITtd2Rryh5EYLcXqXguDiJ58hqF79P_y86leuFZZ3VUnqXDenhsWWKeykmttknDpnFn3NrKd67v-s8WuPZhZBCVSC9FDNyQ8XL3-Y5CKzyPNHdJdRVDRR17CRalC_fHLnPHfIe6S2rdkL-h9JaM9sobFPrl6gnwypc15xZd-D_qzSVENvQmcKwe82sXTwN9qZNi8Hdy06HI4Ap00GllJRSSdJlVkFpMBVzoVqWtpmiQz2kiI0UQ6TjQTGIFg0gJDkSmNUYRJDEYIdkDWi2mBhyRgIAEyzgxq5AxUxo2tIpRWAjKQKjoiNXfQ8azyvxivznj8x_4F2WoNOu1x-777eEK23bevKIKnZL2cL_DMpvFSnfvL-wRNGpx2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Magnetic+Conference+-+Short+Papers+%28INTERMAG+Short+Papers%29&rft.atitle=Radio-Frequency+Spintronic+Neural+Networks&rft.au=Ross%2C+Andrew&rft.au=Leroux%2C+Nathan&rft.au=de+Riz%2C+Arnaud&rft.au=Markovic%2C+Danijela&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FINTERMAGShortPapers58606.2023.10228503&rft.externalDocID=10228503