Larger Receptive Field and Context Information for Pose Estimation: Larger Gaussian Kernel

The field of pose estimation has a wide range of application prospects in various industries in the current era. With the continuous development of deep learning techniques, the effects in the field of human pose estimation are constantly being optimized. However, due to the influence of factors suc...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on High Performance Big Data and Intelligent Systems (HDIS) pp. 100 - 107
Main Authors Ma, Junxiao, Yang, Kai, Ke, Zunwang, Wang, Gang, Zhang, Yugui, Cao, Fengcai, Zhou, Qi, Fei, Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of pose estimation has a wide range of application prospects in various industries in the current era. With the continuous development of deep learning techniques, the effects in the field of human pose estimation are constantly being optimized. However, due to the influence of factors such as occlusion and human posture variability, it is easy to lead to inaccurate identification of keypoints and even keypoints' missing and matching errors, there is still a lot of optimization space for the effect of pose estimation. In this paper, we propose an improvement to generate heatmaps in the training process: increase the radius of the Gaussian kernel and adjust the smoothness of Gaussian distribution to get a larger receptive field, encourage the model to use more context information in prediction, and control other parameters unchanged on the premise of using heatmap regression. Improve keypoint detection performance by optimizing this item. In the experiment, for the COCO-Keypoint data set, we selected different methods published in recent years, and after our improvement, we obtained better accuracy and performance than the original method, which proves the validity of our method.
AbstractList The field of pose estimation has a wide range of application prospects in various industries in the current era. With the continuous development of deep learning techniques, the effects in the field of human pose estimation are constantly being optimized. However, due to the influence of factors such as occlusion and human posture variability, it is easy to lead to inaccurate identification of keypoints and even keypoints' missing and matching errors, there is still a lot of optimization space for the effect of pose estimation. In this paper, we propose an improvement to generate heatmaps in the training process: increase the radius of the Gaussian kernel and adjust the smoothness of Gaussian distribution to get a larger receptive field, encourage the model to use more context information in prediction, and control other parameters unchanged on the premise of using heatmap regression. Improve keypoint detection performance by optimizing this item. In the experiment, for the COCO-Keypoint data set, we selected different methods published in recent years, and after our improvement, we obtained better accuracy and performance than the original method, which proves the validity of our method.
Author Zhou, Qi
Fei, Yang
Zhang, Yugui
Yang, Kai
Ke, Zunwang
Ma, Junxiao
Wang, Gang
Cao, Fengcai
Author_xml – sequence: 1
  givenname: Junxiao
  surname: Ma
  fullname: Ma, Junxiao
  email: bjfumjx@bjfu.edu.cn
  organization: School of Information, Beijing Forestry University,Beijing,China,100083
– sequence: 2
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  email: Yangkai19861220@163.com
  organization: CGNPC Uranium Industry Development Co., Ltd.,Beijing,China,100020
– sequence: 3
  givenname: Zunwang
  surname: Ke
  fullname: Ke, Zunwang
  email: kzwang@xju.edu.cn
  organization: School of Software, Xinjiang University,Urumqi,China,830046
– sequence: 4
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: wanggangnit@nit.zju.edu.cn
  organization: School of Computing and Data Engineering, NingboTech University,Ningbo,China,315100
– sequence: 5
  givenname: Yugui
  surname: Zhang
  fullname: Zhang, Yugui
  email: zhangyugui@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences,AnnLab,Beijing,China,100083
– sequence: 6
  givenname: Fengcai
  surname: Cao
  fullname: Cao, Fengcai
  email: Fengcaicao@163.com
  organization: Zhongke Shangyi Health Technology (Beijing) Co., Ltd.,Beijing,China,100176
– sequence: 7
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
  email: 2021023565@m.scnu.edu.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences,AnnLab,Beijing,China,100083
– sequence: 8
  givenname: Yang
  surname: Fei
  fullname: Fei, Yang
  email: feiyang@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences,AnnLab,Beijing,China,100083
BookMark eNo1j8tKxDAYhSPoQsd5A8G8QMdcmjS_O6lzKRYULxs3Q6b5I4GaDmkUfXsLM67O4Sw-vnNBTuMQkZBrzhacM7jZ3DcvmplKLAQTcsFZCaBYeULmUIGRikkouWbn5L216QMTfcYO9zl8I10F7B210dF6iBl_Mm2iH9KnzWGIdGr0aRiRLsccDtstPTLW9mscg430AVPE_pKceduPOD_mjLytlq_1pmgf10191xaBc8hF2XXAoJLc-Elsh4Y7J7QRqDrTeXDKCyFBoDXOaa93lQbHPehpVF4pKWfk6sANiLjdp0kr_W7_L8s_QMtRAA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HDIS60872.2023.10499504
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350394160
EndPage 107
ExternalDocumentID 10499504
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-4cc9097318f835be81dd2682e5c8cf9d5f22392ea8dd6f6b769d1f962395f5533
IEDL.DBID RIE
IngestDate Wed Aug 27 02:12:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-4cc9097318f835be81dd2682e5c8cf9d5f22392ea8dd6f6b769d1f962395f5533
PageCount 8
ParticipantIDs ieee_primary_10499504
PublicationCentury 2000
PublicationDate 2023-Dec.-6
PublicationDateYYYYMMDD 2023-12-06
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-6
  day: 06
PublicationDecade 2020
PublicationTitle 2023 International Conference on High Performance Big Data and Intelligent Systems (HDIS)
PublicationTitleAbbrev HDIS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8556414
Snippet The field of pose estimation has a wide range of application prospects in various industries in the current era. With the continuous development of deep...
SourceID ieee
SourceType Publisher
StartPage 100
SubjectTerms Context information
Gaussian kernel radius
Heating systems
heatmap
Noise
Pose estimation
Predictive models
Process control
receptive field
Stability analysis
Training
Title Larger Receptive Field and Context Information for Pose Estimation: Larger Gaussian Kernel
URI https://ieeexplore.ieee.org/document/10499504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J59UnHgnD7629pKkja-6OW9joIPhy8jlBETpxtaK-Os9aTtFQfAthJKWHE7Pd9rv-0LIaaQNY5zZQHHrAgZZGmitbZCk3vvDOXxr-kbxfigGY3Yz4ZNWrF5rYQCgJp9B6If1v3w7M5X_VIYZjvice_fPdezcGrFWy9mKI3k2uLx-EFGeeX1Vkoarq3-cm1KXjf4mGa5u2LBFXsKq1KH5-OXF-O8n2iLdb4UeHX3Vnm2yBsUOebrztO4FRSjouSpvQPuen0ZVYWntQvVe0lZ-5MNBcURHsyXQHuZ5M3dO2zWuVLX0-kp6C4sCXrtk3O89XgyC9uyE4DmOZRkwY6R34olzhxhLA8JSm4g8AW5y46TlDnGBTEDl1gondCakjZ1EMCS544gBd0mnmBWwRyimKTDNRKSwg9UmVgpbIK5UmvI4y22-T7p-Y6bzxh5jutqTgz_mD8mGj0_NCRFHpFMuKjjGyl7qkzqin4B7pDQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_RJxYnf5sHX1qZt0sZX3ezcBwM3GL6MfNyAKJ1srYi_3qTtFAXBtxBKWnK5vee255wgdBlIFcc01p6g2ngxJJEnpdReGDnvD2PsW9M1isMRy6bx_YzOGrF6pYUBgIp8Br4bVv_y9UKV7lOZzXCLz6lz_9y0hZ-SWq7VsLZIwK-y294DC9LEKazCyF9f_-PklKpwdHfQaH3Lmi_y7JeF9NXHLzfGfz_TLmp_a_Tw-Kv67KENyPfR48ARu5fYgkHHVnkD3HUMNSxyjSsfqvcCNwIkFxBsR3i8WAHu2Eyv565xs8adKFdOYYn7sMzhpY2m3c7kJvOa0xO8J0J44cVKcefFQ1JjUZYEC0x1yNIQqEqV4Zoaiwx4CCLVmhkmE8Y1MdzCIU4NtSjwALXyRQ6HCNtEhVjGLBC2h5WKCGGbICpEFFGSpDo9Qm23MfPX2iBjvt6T4z_mL9BWNhkO5oPeqH-Ctl2sKoYIO0WtYlnCma3zhTyvovsJQjqnfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+High+Performance+Big+Data+and+Intelligent+Systems+%28HDIS%29&rft.atitle=Larger+Receptive+Field+and+Context+Information+for+Pose+Estimation%3A+Larger+Gaussian+Kernel&rft.au=Ma%2C+Junxiao&rft.au=Yang%2C+Kai&rft.au=Ke%2C+Zunwang&rft.au=Wang%2C+Gang&rft.date=2023-12-06&rft.pub=IEEE&rft.spage=100&rft.epage=107&rft_id=info:doi/10.1109%2FHDIS60872.2023.10499504&rft.externalDocID=10499504