Model-Free Neural-Network-Based Adaptive Control for Single-Phase Dual-Active-Bridge Converter

The Dual Active Bridge (DAB) DC-DC converter have several uses in current energy architectures, because of its numerous advantages, it is always possible to find the DAB in micro grids applications, energy storage systems applications, vehicles to grid applications, and a lot more. This wide range o...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON) pp. 1 - 7
Main Authors Iskandarani, Hassan, Kanaan, Hadi Y.
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.12.2022
Subjects
Online AccessGet full text
DOI10.1109/ONCON56984.2022.10126668

Cover

Abstract The Dual Active Bridge (DAB) DC-DC converter have several uses in current energy architectures, because of its numerous advantages, it is always possible to find the DAB in micro grids applications, energy storage systems applications, vehicles to grid applications, and a lot more. This wide range of applications subject the DAB to system variations and disturbances on both input side and output side, causing deficient performance of the DAB. This study proposes a model-free adaptive control based on feed-forward neural network, to control the output voltage of the DAB and to maintain it constant under system variation with finite time response. The proposed controller has the same layout as a PI controller. The study is done using MATLAB Simulink, where the system is tested under system variations. A performance test using time domain analysis is done for the proposed controller, a PI controller, and to a combination of an AANN in parallel with a PI controller. The comparison between the three controllers is concluded, and showed the upper hand for the proposed controller.
AbstractList The Dual Active Bridge (DAB) DC-DC converter have several uses in current energy architectures, because of its numerous advantages, it is always possible to find the DAB in micro grids applications, energy storage systems applications, vehicles to grid applications, and a lot more. This wide range of applications subject the DAB to system variations and disturbances on both input side and output side, causing deficient performance of the DAB. This study proposes a model-free adaptive control based on feed-forward neural network, to control the output voltage of the DAB and to maintain it constant under system variation with finite time response. The proposed controller has the same layout as a PI controller. The study is done using MATLAB Simulink, where the system is tested under system variations. A performance test using time domain analysis is done for the proposed controller, a PI controller, and to a combination of an AANN in parallel with a PI controller. The comparison between the three controllers is concluded, and showed the upper hand for the proposed controller.
Author Iskandarani, Hassan
Kanaan, Hadi Y.
Author_xml – sequence: 1
  givenname: Hassan
  surname: Iskandarani
  fullname: Iskandarani, Hassan
  email: hassaniskandarani@net.usj.edu.lb
  organization: Saint Joseph University of Beirut,Faculty of Engineering - ESIB,Mar Roukoz,Lebanon
– sequence: 2
  givenname: Hadi Y.
  surname: Kanaan
  fullname: Kanaan, Hadi Y.
  email: hadikanaan@usj.edu.lb
  organization: Saint Joseph University of Beirut,Faculty of Engineering - ESIB,Mar Roukoz,Lebanon
BookMark eNo1j8tOwzAURI0ECyj9Axb-AQe_4tjLNFBAKgkSsKW6cW6KRUgqNy3i7wmv1WzOHM2ckeN-6JEQKngiBHeXVVlUZWqc1YnkUiaCC2mMsUdk7jJnVcqVs9y4U_JyPzTYsWVEpCXuI3SsxPFjiG9sATtsaN7AdgwHpMXQj3HoaDtE-hj6TYfs4XVC6NV-KuX-G2KLGJrND3vAOGI8JyctdDuc_-WMPC-vn4pbtqpu7op8xYIQbmSat23LMdPgVY0-k6n2opYSZDrN56bG2nLNBWhUUqIGzMBqBeDrxivp1Ixc_HoDIq63MbxD_Fz_31Zf-hdS_g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ONCON56984.2022.10126668
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350398069
EndPage 7
ExternalDocumentID 10126668
Genre orig-research
GrantInformation_xml – fundername: Agence Universitaire de la Francophonie (AUF)
  funderid: 10.13039/501100002708
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-40fff0e74ac3bec7254c1b22a2502206beb80401a4e322e4ae7a843aacbdc3293
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:30 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-40fff0e74ac3bec7254c1b22a2502206beb80401a4e322e4ae7a843aacbdc3293
PageCount 7
ParticipantIDs ieee_primary_10126668
PublicationCentury 2000
PublicationDate 2022-Dec.-9
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON)
PublicationTitleAbbrev ONCON
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8175513
Snippet The Dual Active Bridge (DAB) DC-DC converter have several uses in current energy architectures, because of its numerous advantages, it is always possible to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Adaptive control
Bridge circuits
DAB
DC-DC power converters
Mathematical models
neural network
PI control
Software packages
SPS modulation
voltage regulation
Title Model-Free Neural-Network-Based Adaptive Control for Single-Phase Dual-Active-Bridge Converter
URI https://ieeexplore.ieee.org/document/10126668
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UjPhmD143TTabxx7baimCsaCFniz7mKJY2lKSi7_e2U2jKAjeQphskpndncd-M0PIDQeRCx0LhuYxRwclyZm0kDFhEp1EIAX3AbeHMhtPxf0sne2S1X0uDAB48BmE7tKf5du1qV2orOdqUaG5XXRIB-dZk6zVonMi2XtEN7hMM1m4WAnnYUv-o3GK1xujA1K2b2zgIu9hXenQfPwqxvjvTzokwXeKHp18KZ8jsgerY_LiOpst2WgLQF3VDbVkZQPzZgPUVpb2rdq4_Y0OG4Q6RZOVPuEAS2CTVyShtzU-1PebIBv4ZC5H65o2wzYg09Hd83DMdg0U2FscywpZv1gsIsiFQs6DydEZNLHmXKHdw3mUadAFLuJYCcB1DUJBrgqRKGW0NQkaAieku1qv4BR5XMhUobijTHF3tKpTY3kiIce_T3lkz0jgmDPfNDUy5i1fzv-4f0H2nYw8MERekm61reEK1Xulr71YPwHIyaUu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHOAEiCHe9MA1XZumjxy3wTRgK5PYpJ2YktQTiGqbpvbCr8dJVxBISNyqKunDVuLPzmebkBsGPObK5xThMUMHJYipyCCiXAcq8EBwZgNuwzTqT_jDNJxuktVtLgwAWPIZuObSnuVnS12aUFnL1KJCuJ1skx00_Dys0rVqfo4nWk_oCKdhJBITLWHMrSf8aJ1iLUdvn6T1OyvCyLtbFsrVH7_KMf77ow5I8ztJzxl9mZ9DsgWLI_JiepvltLcGcEzdDZnTtCJ60w7aq8xpZ3JldjinW3HUHQStzjM-IAc6esUhzm2Jk9p2G6Qdm85lxpq2zbBukknvbtzt000LBfrm-6JA4c_ncw9iLlH2oGN0B7WvGJOIfBjzIgUqwWXsSw64soFLiGXCAym1ynSAUOCYNBbLBZygjBMRSlS4F0lmDldVqDMWCIjx70PmZaekaYQzW1VVMma1XM7-uH9Ndvvj4WA2uE8fz8me0ZeliYgL0ijWJVyisS_UlVXxJ52UqHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+1st+Industrial+Electronics+Society+Annual+On-Line+Conference+%28ONCON%29&rft.atitle=Model-Free+Neural-Network-Based+Adaptive+Control+for+Single-Phase+Dual-Active-Bridge+Converter&rft.au=Iskandarani%2C+Hassan&rft.au=Kanaan%2C+Hadi+Y.&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FONCON56984.2022.10126668&rft.externalDocID=10126668