An Investigation into Improved YOLOv8-based Target Detection Algorithms for UAV Aerial Imagery
In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated...
Saved in:
Published in | 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) pp. 164 - 170 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated multi-scale convolutional layer, integrating depth-separable convolution, attention mechanisms, and multi-scale processing techniques, replaces the original model's convolution. Moreover, we introduce an attention mechanism for a Bi-Level Routing within the core component of the base model, and adjustments are made to the original model's loss function. Lastly, to confirm the viability of the enhanced model proposed in this paper, we conducted a validation of the metrics using publicly accessible datasets. The findings illustrate that the improved model outlined in this research substantially enhances target recognition accuracy in UAV images. Furthermore, the model exhibits superior performance in mitigating issues of duplicate detection and target omission. |
---|---|
AbstractList | In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated multi-scale convolutional layer, integrating depth-separable convolution, attention mechanisms, and multi-scale processing techniques, replaces the original model's convolution. Moreover, we introduce an attention mechanism for a Bi-Level Routing within the core component of the base model, and adjustments are made to the original model's loss function. Lastly, to confirm the viability of the enhanced model proposed in this paper, we conducted a validation of the metrics using publicly accessible datasets. The findings illustrate that the improved model outlined in this research substantially enhances target recognition accuracy in UAV images. Furthermore, the model exhibits superior performance in mitigating issues of duplicate detection and target omission. |
Author | Ming, Rui Liu, Xinyu Lin, Yuxuan Gong, Qian |
Author_xml | – sequence: 1 givenname: Rui surname: Ming fullname: Ming, Rui email: rming@mju.edu.cn organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108 – sequence: 2 givenname: Xinyu surname: Liu fullname: Liu, Xinyu email: 18707145134@163.com organization: Fuzhou University,College of Computer and Data Science/College of Software,Fuzhou,China,350108 – sequence: 3 givenname: Yuxuan surname: Lin fullname: Lin, Yuxuan email: linyuxuan@stu.mju.edu.cn organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108 – sequence: 4 givenname: Qian surname: Gong fullname: Gong, Qian email: hydrargyrum23@163.com organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108 |
BookMark | eNo1j8tKxDAUhiPoQsd5AxfxATrm5PSWZamXKVS6qYIbh7Q9qYFehjQU5u0dvKx-Pvj44L9hl9M8EWP3IHYAQj0UeZG_lrGAGHZSSNyBCGWYRtEF26pEpRgJRAghuWaf2cSLaaXF2157O0_cTn7mxXh080od_6jKak2DRi9nqLXryfNH8tT-uNnQz876r3HhZnb8LXvnGTmrh3NA9-ROt-zK6GGh7d9uWP38VOf7oKxeijwrAwugfIAmkl2sQWilmggaxERIaSTp0LQQY9wlaDCRopEolJG6a9o4ItG2XZNiiBt295u1RHQ4Ojtqdzr8v8ZvmdFSQQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICML60161.2023.10424855 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350331417 |
EndPage | 170 |
ExternalDocumentID | 10424855 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-3f52d6a10a99b51b337022f2ea4fc1636d73f3720b2309f2adbc65e0ccdb8343 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:50:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-3f52d6a10a99b51b337022f2ea4fc1636d73f3720b2309f2adbc65e0ccdb8343 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10424855 |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov.-3 |
PublicationDateYYYYMMDD | 2023-11-03 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) |
PublicationTitleAbbrev | ICICML |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8599712 |
Snippet | In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 164 |
SubjectTerms | Autonomous aerial vehicles Computational modeling Convolution Multi-scale Convolutions Object detection Optimization Routing Target Detection Target recognition UAV Aerial Imagery YOLOv8-based |
Title | An Investigation into Improved YOLOv8-based Target Detection Algorithms for UAV Aerial Imagery |
URI | https://ieeexplore.ieee.org/document/10424855 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPDauiZp2h7LdGwyNw-bzIujSV50qK3MTtC_3iTd_AWCtxJKEpI8vveS930PoRMGthi5ObwklpHHKBOeSKS1K_uqlsSMglP77PPOiF2Mw_GCrO64MADgks_At5_uLV8Vcm6vyoyFM6fAVUM1E7lVZK1VdLzQzTzttrqty57VF7GBH6H-8v8flVMccLTXUX85ZJUv8uDPS-HL919qjP-e0wZqfHH08NUn-myiFci30G2a42_KGUWOp3lZ4OrmABS-GfQGr7FnoUvhoUsCx2dQunSsHKePd8VsWt4_vWDjyuJReo1Td0BNB1bq4q2Bhu3zYavjLSooeNMgSEqP6pAongXNLElEGAhKI4PZmkDGtDSeGFcR1bZOjTCRSKJJpoTkITSlVCKmjG6jel7ksIOw8aokETzmxoZZoiMBGecilFrGOlJAdlHDrs3kudLImCyXZe-P9n20ZrfIsfroAaqXszkcGngvxZHb1g81fKUG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL62rk2ato9lOjbtNh86mS-O5qZDbWVmgv56k3TzBoJvIZALSQ7fSXK-7wBwgoVJRq4Prx-x0MEIU4fGzNiV-VWLI4yEVfvskfYAXwyD4YysbrkwQggbfCZcU7R_-bxkU_NUpi0cWwWuRbCkgT_wKrrWMjieKWeedpqdZjc1CiPm6ucjd97iR-4UCx2tNdCbD1pFjDy4U0Vd9v5Lj_Hfs1oH9S-WHrz6xJ8NsCCKTXCbFPCbdkZZwHGhSli9HQgOb_pp_zVyDHhxmNkwcHgmlA3IKmDyeFdOxur-6QVqZxYOkmuY2COqOzBiF291kLXOs2bbmeVQcMaeFysHycDnJPcaeRzTwKMIhRq1pS9yLJn2xQgPkTSZaqi-i8TSzzllJBANxjiNEEZboFaUhdgGUPtVzKckItqKcSxDKnJCaMAki2TIhb8D6mZtRs-VSsZoviy7f9QfgZV21k1Haad3uQdWzXZZjh_aBzU1mYoDDfaKHtot_gAA6KhP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Image+Processing%2C+Computer+Vision+and+Machine+Learning+%28ICICML%29&rft.atitle=An+Investigation+into+Improved+YOLOv8-based+Target+Detection+Algorithms+for+UAV+Aerial+Imagery&rft.au=Ming%2C+Rui&rft.au=Liu%2C+Xinyu&rft.au=Lin%2C+Yuxuan&rft.au=Gong%2C+Qian&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=164&rft.epage=170&rft_id=info:doi/10.1109%2FICICML60161.2023.10424855&rft.externalDocID=10424855 |