An Investigation into Improved YOLOv8-based Target Detection Algorithms for UAV Aerial Imagery

In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) pp. 164 - 170
Main Authors Ming, Rui, Liu, Xinyu, Lin, Yuxuan, Gong, Qian
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated multi-scale convolutional layer, integrating depth-separable convolution, attention mechanisms, and multi-scale processing techniques, replaces the original model's convolution. Moreover, we introduce an attention mechanism for a Bi-Level Routing within the core component of the base model, and adjustments are made to the original model's loss function. Lastly, to confirm the viability of the enhanced model proposed in this paper, we conducted a validation of the metrics using publicly accessible datasets. The findings illustrate that the improved model outlined in this research substantially enhances target recognition accuracy in UAV images. Furthermore, the model exhibits superior performance in mitigating issues of duplicate detection and target omission.
AbstractList In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a formidable challenge in the realm of computer vision. This study introduces an enhancement over the YOLOv8 algorithm, wherein a sophisticated multi-scale convolutional layer, integrating depth-separable convolution, attention mechanisms, and multi-scale processing techniques, replaces the original model's convolution. Moreover, we introduce an attention mechanism for a Bi-Level Routing within the core component of the base model, and adjustments are made to the original model's loss function. Lastly, to confirm the viability of the enhanced model proposed in this paper, we conducted a validation of the metrics using publicly accessible datasets. The findings illustrate that the improved model outlined in this research substantially enhances target recognition accuracy in UAV images. Furthermore, the model exhibits superior performance in mitigating issues of duplicate detection and target omission.
Author Ming, Rui
Liu, Xinyu
Lin, Yuxuan
Gong, Qian
Author_xml – sequence: 1
  givenname: Rui
  surname: Ming
  fullname: Ming, Rui
  email: rming@mju.edu.cn
  organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108
– sequence: 2
  givenname: Xinyu
  surname: Liu
  fullname: Liu, Xinyu
  email: 18707145134@163.com
  organization: Fuzhou University,College of Computer and Data Science/College of Software,Fuzhou,China,350108
– sequence: 3
  givenname: Yuxuan
  surname: Lin
  fullname: Lin, Yuxuan
  email: linyuxuan@stu.mju.edu.cn
  organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108
– sequence: 4
  givenname: Qian
  surname: Gong
  fullname: Gong, Qian
  email: hydrargyrum23@163.com
  organization: Minjiang University,College of Computer and Control Engineering,Fuzhou,China,350108
BookMark eNo1j8tKxDAUhiPoQsd5AxfxATrm5PSWZamXKVS6qYIbh7Q9qYFehjQU5u0dvKx-Pvj44L9hl9M8EWP3IHYAQj0UeZG_lrGAGHZSSNyBCGWYRtEF26pEpRgJRAghuWaf2cSLaaXF2157O0_cTn7mxXh080od_6jKak2DRi9nqLXryfNH8tT-uNnQz876r3HhZnb8LXvnGTmrh3NA9-ROt-zK6GGh7d9uWP38VOf7oKxeijwrAwugfIAmkl2sQWilmggaxERIaSTp0LQQY9wlaDCRopEolJG6a9o4ItG2XZNiiBt295u1RHQ4Ojtqdzr8v8ZvmdFSQQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICML60161.2023.10424855
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350331417
EndPage 170
ExternalDocumentID 10424855
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-3f52d6a10a99b51b337022f2ea4fc1636d73f3720b2309f2adbc65e0ccdb8343
IEDL.DBID RIE
IngestDate Wed May 01 11:50:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-3f52d6a10a99b51b337022f2ea4fc1636d73f3720b2309f2adbc65e0ccdb8343
PageCount 7
ParticipantIDs ieee_primary_10424855
PublicationCentury 2000
PublicationDate 2023-Nov.-3
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)
PublicationTitleAbbrev ICICML
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8599712
Snippet In UAV imagery, the intricate backgrounds combined with the high quantity and compact distribution of minute targets have consistently made target detection a...
SourceID ieee
SourceType Publisher
StartPage 164
SubjectTerms Autonomous aerial vehicles
Computational modeling
Convolution
Multi-scale Convolutions
Object detection
Optimization
Routing
Target Detection
Target recognition
UAV Aerial Imagery
YOLOv8-based
Title An Investigation into Improved YOLOv8-based Target Detection Algorithms for UAV Aerial Imagery
URI https://ieeexplore.ieee.org/document/10424855
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPDauiZp2h7LdGwyNw-bzIujSV50qK3MTtC_3iTd_AWCtxJKEpI8vveS930PoRMGthi5ObwklpHHKBOeSKS1K_uqlsSMglP77PPOiF2Mw_GCrO64MADgks_At5_uLV8Vcm6vyoyFM6fAVUM1E7lVZK1VdLzQzTzttrqty57VF7GBH6H-8v8flVMccLTXUX85ZJUv8uDPS-HL919qjP-e0wZqfHH08NUn-myiFci30G2a42_KGUWOp3lZ4OrmABS-GfQGr7FnoUvhoUsCx2dQunSsHKePd8VsWt4_vWDjyuJReo1Td0BNB1bq4q2Bhu3zYavjLSooeNMgSEqP6pAongXNLElEGAhKI4PZmkDGtDSeGFcR1bZOjTCRSKJJpoTkITSlVCKmjG6jel7ksIOw8aokETzmxoZZoiMBGecilFrGOlJAdlHDrs3kudLImCyXZe-P9n20ZrfIsfroAaqXszkcGngvxZHb1g81fKUG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL62rk2ato9lOjbtNh86mS-O5qZDbWVmgv56k3TzBoJvIZALSQ7fSXK-7wBwgoVJRq4Prx-x0MEIU4fGzNiV-VWLI4yEVfvskfYAXwyD4YysbrkwQggbfCZcU7R_-bxkU_NUpi0cWwWuRbCkgT_wKrrWMjieKWeedpqdZjc1CiPm6ucjd97iR-4UCx2tNdCbD1pFjDy4U0Vd9v5Lj_Hfs1oH9S-WHrz6xJ8NsCCKTXCbFPCbdkZZwHGhSli9HQgOb_pp_zVyDHhxmNkwcHgmlA3IKmDyeFdOxur-6QVqZxYOkmuY2COqOzBiF291kLXOs2bbmeVQcMaeFysHycDnJPcaeRzTwKMIhRq1pS9yLJn2xQgPkTSZaqi-i8TSzzllJBANxjiNEEZboFaUhdgGUPtVzKckItqKcSxDKnJCaMAki2TIhb8D6mZtRs-VSsZoviy7f9QfgZV21k1Haad3uQdWzXZZjh_aBzU1mYoDDfaKHtot_gAA6KhP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Image+Processing%2C+Computer+Vision+and+Machine+Learning+%28ICICML%29&rft.atitle=An+Investigation+into+Improved+YOLOv8-based+Target+Detection+Algorithms+for+UAV+Aerial+Imagery&rft.au=Ming%2C+Rui&rft.au=Liu%2C+Xinyu&rft.au=Lin%2C+Yuxuan&rft.au=Gong%2C+Qian&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=164&rft.epage=170&rft_id=info:doi/10.1109%2FICICML60161.2023.10424855&rft.externalDocID=10424855