Construction and Simulation of Financial Risk Prediction Model Based on LSTM
To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the...
Saved in:
Published in | 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) pp. 1 - 6 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.12.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ACAIT56212.2022.10137998 |
Cover
Abstract | To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the precision of the financial risk prediction model reaches the best level. Compared with Z-score model and Fisher discriminant analysis method, LSTM model shows good performance in F1 measure, precision, accuracy and recall, reaching 93.91%, 94.63%, 94.06% and 95.12% respectively. The above experimental results verify that the financial risk prediction model based on LSTM has feasibility and certain advantages, and has certain practical reference value for the financial risk prediction of enterprises. |
---|---|
AbstractList | To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the precision of the financial risk prediction model reaches the best level. Compared with Z-score model and Fisher discriminant analysis method, LSTM model shows good performance in F1 measure, precision, accuracy and recall, reaching 93.91%, 94.63%, 94.06% and 95.12% respectively. The above experimental results verify that the financial risk prediction model based on LSTM has feasibility and certain advantages, and has certain practical reference value for the financial risk prediction of enterprises. |
Author | Nong, Xiaochan |
Author_xml | – sequence: 1 givenname: Xiaochan surname: Nong fullname: Nong, Xiaochan email: N269811789@163.com organization: Baise Vocational College,Professional Leader of Big Data and Accounting,Department of Economics and Management,Baise,Guangxi,China |
BookMark | eNo1j8FKw0AURUfQhdb-gYv5gdS8mWSSt4zBaiFFsXFdXmbewGA6kSRd-PcWW1eXA4cD905cxyGyEBLSFUCKj1VdbdrcKFArlSq1ghR0gVheiSUWJRiTZ7k-mbeiqYc4zePRzmGIkqKTu3A49vSHg5frECnaQL38CNOXfB_ZhbO7HRz38okmdvKEza7d3osbT_3Ey8suxOf6ua1fk-btZVNXTRIAcE402oxtlxvjS069RZ0ZRQY7j0aztVxSnkGpCCw6nxbsuUDlwYCjDinTC_Fw7gZm3n-P4UDjz_7_pP4FjCdMrw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACAIT56212.2022.10137998 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665453110 1665453117 |
EndPage | 6 |
ExternalDocumentID | 10137998 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-39c4ecb566f8e0fc93462a69bf963ecce8a54182a1c9df07efe792f161dab9a43 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:13:10 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-39c4ecb566f8e0fc93462a69bf963ecce8a54182a1c9df07efe792f161dab9a43 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10137998 |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec.-9 |
PublicationDateYYYYMMDD | 2022-12-09 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) |
PublicationTitleAbbrev | ACAIT |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8397741 |
Snippet | To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Analytical models Artificial intelligence data analysis evaluation indicators financial risk prediction LSTM Predictive models Simulation |
Title | Construction and Simulation of Financial Risk Prediction Model Based on LSTM |
URI | https://ieeexplore.ieee.org/document/10137998 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9ddk910N7kqliptEdtCbyWPCZTqVuj24q93knYVBcHbPtkws2Eymfm-j5AbzXMvS8OTLAOXiJLZRDqJqYpWhcuVLZkM4OThqOhPxdOsO9uB1SMWBgBi8xmk4TDW8t3KbsJWGc5wnpeYH7RIC_-zLVir6c5h6hYH_zjBeM4DwCrL0ubxH8IpMW70Dsio-eK2XWSZbmqT2o9fZIz_HtIh6XxD9OjzV_A5IntQHZNBkN9sCGGprhwdL952-lx05WmvodegL4v1Et8PVZp4M0iivdI7DGmO4ulgPBl2yLT3MLnvJzu5hGTBuaoTtKwAa3B95iUwb1UuikwXynicZOgpkLorMJ3Q3CrnWQkeSpV5XPI5bZQW-QlpV6sKTtGixgXeP8h5KJz6wjApoFtYxb3nzPoz0gmmmL9vGTHmjRXO_7h-QfaDR2IbiLokbbQEXGEwr811dOInyWmf7g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLzumuxmH7kqlla3RewWeit5TKDUbgXbi7_eybarKAje9kFImCF8mcx83xByo3js8kzzIIrABiJjJshtjqGKkqmNpclY7snJ_UHaHYnHcTLekNVrLgwA1MVnEPrHOpdvF2blr8pwh_M4w_hgm-wg8ItkTddq6nOYvMXl90pEdO4pVlEUNgN-tE6pkaOzTwbNnOuCkVm4WurQfPySY_z3og5I-5ukR5-_4OeQbEF1RArfgLORhKWqsnQ4nW86dNGFo51GYIO-TN9nON7naeqfvinaK71DULMUX4th2W-TUeehvO8Gm4YJwZRzuQzQtgKMxhOay4E5I2ORRiqV2uE2Q19BrhKBAYXiRlrHMnCQycjhoc8qLZWIj0mrWlRwghbV1iv_Qcx96tSlmuUCktRI7hxnxp2StjfF5G2tiTFprHD2x_drstst-8Wk6A2ezsme905dFCIvSAutApcI7Ut9VTv0E1nUozs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+6th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=Construction+and+Simulation+of+Financial+Risk+Prediction+Model+Based+on+LSTM&rft.au=Nong%2C+Xiaochan&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FACAIT56212.2022.10137998&rft.externalDocID=10137998 |