Construction and Simulation of Financial Risk Prediction Model Based on LSTM

To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the...

Full description

Saved in:
Bibliographic Details
Published in2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) pp. 1 - 6
Main Author Nong, Xiaochan
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.12.2022
Subjects
Online AccessGet full text
DOI10.1109/ACAIT56212.2022.10137998

Cover

Abstract To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the precision of the financial risk prediction model reaches the best level. Compared with Z-score model and Fisher discriminant analysis method, LSTM model shows good performance in F1 measure, precision, accuracy and recall, reaching 93.91%, 94.63%, 94.06% and 95.12% respectively. The above experimental results verify that the financial risk prediction model based on LSTM has feasibility and certain advantages, and has certain practical reference value for the financial risk prediction of enterprises.
AbstractList To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy of financial risk prediction. The simulation results show that when the dimension and layers of LSTM network are 128 and 4 respectively, the precision of the financial risk prediction model reaches the best level. Compared with Z-score model and Fisher discriminant analysis method, LSTM model shows good performance in F1 measure, precision, accuracy and recall, reaching 93.91%, 94.63%, 94.06% and 95.12% respectively. The above experimental results verify that the financial risk prediction model based on LSTM has feasibility and certain advantages, and has certain practical reference value for the financial risk prediction of enterprises.
Author Nong, Xiaochan
Author_xml – sequence: 1
  givenname: Xiaochan
  surname: Nong
  fullname: Nong, Xiaochan
  email: N269811789@163.com
  organization: Baise Vocational College,Professional Leader of Big Data and Accounting,Department of Economics and Management,Baise,Guangxi,China
BookMark eNo1j8FKw0AURUfQhdb-gYv5gdS8mWSSt4zBaiFFsXFdXmbewGA6kSRd-PcWW1eXA4cD905cxyGyEBLSFUCKj1VdbdrcKFArlSq1ghR0gVheiSUWJRiTZ7k-mbeiqYc4zePRzmGIkqKTu3A49vSHg5frECnaQL38CNOXfB_ZhbO7HRz38okmdvKEza7d3osbT_3Ey8suxOf6ua1fk-btZVNXTRIAcE402oxtlxvjS069RZ0ZRQY7j0aztVxSnkGpCCw6nxbsuUDlwYCjDinTC_Fw7gZm3n-P4UDjz_7_pP4FjCdMrw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACAIT56212.2022.10137998
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665453110
1665453117
EndPage 6
ExternalDocumentID 10137998
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-39c4ecb566f8e0fc93462a69bf963ecce8a54182a1c9df07efe792f161dab9a43
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:10 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-39c4ecb566f8e0fc93462a69bf963ecce8a54182a1c9df07efe792f161dab9a43
PageCount 6
ParticipantIDs ieee_primary_10137998
PublicationCentury 2000
PublicationDate 2022-Dec.-9
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)
PublicationTitleAbbrev ACAIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8397741
Snippet To further improve the prediction ability of enterprises in financial risk, a financial risk prediction model based on LSTM is proposed to improve the accuracy...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Artificial intelligence
data analysis
evaluation indicators
financial risk prediction
LSTM
Predictive models
Simulation
Title Construction and Simulation of Financial Risk Prediction Model Based on LSTM
URI https://ieeexplore.ieee.org/document/10137998
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9ddk910N7kqliptEdtCbyWPCZTqVuj24q93knYVBcHbPtkws2Eymfm-j5AbzXMvS8OTLAOXiJLZRDqJqYpWhcuVLZkM4OThqOhPxdOsO9uB1SMWBgBi8xmk4TDW8t3KbsJWGc5wnpeYH7RIC_-zLVir6c5h6hYH_zjBeM4DwCrL0ubxH8IpMW70Dsio-eK2XWSZbmqT2o9fZIz_HtIh6XxD9OjzV_A5IntQHZNBkN9sCGGprhwdL952-lx05WmvodegL4v1Et8PVZp4M0iivdI7DGmO4ulgPBl2yLT3MLnvJzu5hGTBuaoTtKwAa3B95iUwb1UuikwXynicZOgpkLorMJ3Q3CrnWQkeSpV5XPI5bZQW-QlpV6sKTtGixgXeP8h5KJz6wjApoFtYxb3nzPoz0gmmmL9vGTHmjRXO_7h-QfaDR2IbiLokbbQEXGEwr811dOInyWmf7g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLzumuxmH7kqlla3RewWeit5TKDUbgXbi7_eybarKAje9kFImCF8mcx83xByo3js8kzzIIrABiJjJshtjqGKkqmNpclY7snJ_UHaHYnHcTLekNVrLgwA1MVnEPrHOpdvF2blr8pwh_M4w_hgm-wg8ItkTddq6nOYvMXl90pEdO4pVlEUNgN-tE6pkaOzTwbNnOuCkVm4WurQfPySY_z3og5I-5ukR5-_4OeQbEF1RArfgLORhKWqsnQ4nW86dNGFo51GYIO-TN9nON7naeqfvinaK71DULMUX4th2W-TUeehvO8Gm4YJwZRzuQzQtgKMxhOay4E5I2ORRiqV2uE2Q19BrhKBAYXiRlrHMnCQycjhoc8qLZWIj0mrWlRwghbV1iv_Qcx96tSlmuUCktRI7hxnxp2StjfF5G2tiTFprHD2x_drstst-8Wk6A2ezsme905dFCIvSAutApcI7Ut9VTv0E1nUozs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+6th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=Construction+and+Simulation+of+Financial+Risk+Prediction+Model+Based+on+LSTM&rft.au=Nong%2C+Xiaochan&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FACAIT56212.2022.10137998&rft.externalDocID=10137998