A Novel Approach for Transfer Learning Motor Imagery Classification Based on IVA

Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspi...

Full description

Saved in:
Bibliographic Details
Published in2023 31st European Signal Processing Conference (EUSIPCO) pp. 1210 - 1214
Main Authors Moraes, Caroline P. A., Fantinato, Denis G., Neves, Aline
Format Conference Proceeding
LanguageEnglish
Published EURASIP 04.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspired by ICA, Independent Vector Analysis (IVA) is an extension of the problem for multiple datasets and explores the correlation between different datasets through the use of Mutual Information (Mutinf). The statistical dependency between datasets through Mutinf could help in MI classification since it allows a generic and homogeneous treatment of the whole data and a possible knowledge transfer between patients. This paper proposes an innovative approach for the Transfer Learning MI task by exploring the minimization of mutual information through IVA applied to motor imagery. The results show a high correlation and small standard deviation cross-subjects.
AbstractList Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspired by ICA, Independent Vector Analysis (IVA) is an extension of the problem for multiple datasets and explores the correlation between different datasets through the use of Mutual Information (Mutinf). The statistical dependency between datasets through Mutinf could help in MI classification since it allows a generic and homogeneous treatment of the whole data and a possible knowledge transfer between patients. This paper proposes an innovative approach for the Transfer Learning MI task by exploring the minimization of mutual information through IVA applied to motor imagery. The results show a high correlation and small standard deviation cross-subjects.
Author Fantinato, Denis G.
Moraes, Caroline P. A.
Neves, Aline
Author_xml – sequence: 1
  givenname: Caroline P. A.
  surname: Moraes
  fullname: Moraes, Caroline P. A.
  email: caroline.moraes@ufabc.edu.br
  organization: Federal University of ABC (UFABC),Center for Engineering, Modeling and Applied Social Sciences,Santo André,Brazil
– sequence: 2
  givenname: Denis G.
  surname: Fantinato
  fullname: Fantinato, Denis G.
  organization: State University of Campinas (UNICAMP),Department of Computer Engineering and Industrial Automation,Campinas,Brazil
– sequence: 3
  givenname: Aline
  surname: Neves
  fullname: Neves, Aline
  organization: Federal University of ABC (UFABC),Center for Engineering, Modeling and Applied Social Sciences,Santo André,Brazil
BookMark eNo1kE1Lw0AYhFdRsNb8Aw8LnlP3O_seY6gaqLZg67XsJu_WhTYpmyL03xtQTzMMwwMzt-Sq6zsk5IGzmZDA4XG--ahX1VJbq9RMMCFnnAkLoOUFyaCwoIzSIA1jl2QiWGFyroy-IdkwRD82mS04MxOyKul7_417Wh6PqXfNFw19ouvkuiFgogt0qYvdjr71pzGvD26H6UyrvRs5ITbuFPuOPrkBWzqa-rO8I9fB7QfM_nRKNs_zdfWaL5YvdVUu8sg5nHJpORhvhFNgWfAa2kJqaT0PDlrZKmGdh6DHGbyVNmiBCrUG7w1nqjEop-T-lxsRcXtM8eDSeft_gvwBmrZTBQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO58844.2023.10289953
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789464593600
9464593601
EISSN 2076-1465
EndPage 1214
ExternalDocumentID 10289953
Genre orig-research
GrantInformation_xml – fundername: Paulo Research Foundation (FAPESP)
  grantid: 88887.595656/2020-00
  funderid: 10.13039/501100001807
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-38196b62a4980fb59d73538b1fa9d3d428ab9f59461d38f52e4e559bb6104c6e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-38196b62a4980fb59d73538b1fa9d3d428ab9f59461d38f52e4e559bb6104c6e3
PageCount 5
ParticipantIDs ieee_primary_10289953
PublicationCentury 2000
PublicationDate 2023-Sept.-4
PublicationDateYYYYMMDD 2023-09-04
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2023 31st European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2023
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssib028087106
ssib025355106
Score 1.8462615
Snippet Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic...
SourceID ieee
SourceType Publisher
StartPage 1210
SubjectTerms Brain-Computer Interface
Correlation
Electroen-cephalogram
Electroencephalography
Independent Vector Analysis
Minimization
Motor Imagery
Signal processing
Signal processing algorithms
Solids
Transfer learning
Title A Novel Approach for Transfer Learning Motor Imagery Classification Based on IVA
URI https://ieeexplore.ieee.org/document/10289953
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPvBPQ13dJc1jzOsbEJmwOd7G00l4roVpFO0F_vSdZ6A8G3UGgJOSXf-ZLzfQehCw0YZADaiTSJJNzGKVGQ5hNNpUyocG1jvN55NJaDKb-aiVkpVg9aGOdcKD5zkR-Gu3ybm5U_Kmt6MFRKsBqqAXNbi7WqnycWgJzfrgzjpAVcoCU30Xkod1ZUNXvTm-Gke-21mf44JWZR9cUfvVUCtPS30bia1Lqi5DFaFToy77_8Gv896x3U-FLx4cknPu2iDbfcQ5MOHuev7gl3SjNxDFkrDogF7-DSbvUej3Ig43i48BYXbzi0zvRFRSGO-BKgz2IYDO86DTTt9267A1J2VSAPlKqCeIomtYxTrpJWpoWybQa7nqZZqiyzQEdSrTKhuKSWJZmIHXdAO7SGRIsb6dg-qi_zpTtA2AhI5wzsComWXGqmrZI0E4ybtndAZYeo4Zdj_rw2zphXK3H0x_NjtOWjEkq4-AmqFy8rdwqYX-izEOsP5o6nQQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3AX1ttzQfax7n2Fh1qwM38W00aSqiriKdoL_em6z1CwTfQqEl5Jace5NzzkXoTAEGaYB2T-hQeCwNEk9Cmu8pIkRIuGlpbfXOw1j0J-zilt-WYnWnhTHGOPKZ8e3Q3eWnuZ7bo7KGBUMpOV1GKwD8nCzkWtXvE3DAzm-XhkHYhGqgKVbRqSM8SyIb3cl1NOpcWXWmPVAJqF9980d3FQcuvQ0UV9NacEoe_HmhfP3-y7Hx3_PeRPUvHR8efSLUFloys200auM4fzWPuF3aiWPIW7HDLHgHl4ard3iYQzmOoydrcvGGXfNMSytykcTnAH4phkF0066jSa877vS9sq-Cd0-ILDxbpAklgoTJsJkpLtMWhX1PkSyRKU2hIEmUzLhkgqQ0zHhgmIHCQylItZgWhu6g2iyfmV2ENYeETsO-ECrBhKIqlYJknDLdsh6odA_V7XJMnxfWGdNqJfb_eH6C1vrj4WA6iOLLA7RuI-QIXewQ1YqXuTmCDKBQxy7uH9V_qoo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+31st+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=A+Novel+Approach+for+Transfer+Learning+Motor+Imagery+Classification+Based+on+IVA&rft.au=Moraes%2C+Caroline+P.+A.&rft.au=Fantinato%2C+Denis+G.&rft.au=Neves%2C+Aline&rft.date=2023-09-04&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1210&rft.epage=1214&rft_id=info:doi/10.23919%2FEUSIPCO58844.2023.10289953&rft.externalDocID=10289953