A Novel Approach for Transfer Learning Motor Imagery Classification Based on IVA
Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspi...
Saved in:
Published in | 2023 31st European Signal Processing Conference (EUSIPCO) pp. 1210 - 1214 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
EURASIP
04.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspired by ICA, Independent Vector Analysis (IVA) is an extension of the problem for multiple datasets and explores the correlation between different datasets through the use of Mutual Information (Mutinf). The statistical dependency between datasets through Mutinf could help in MI classification since it allows a generic and homogeneous treatment of the whole data and a possible knowledge transfer between patients. This paper proposes an innovative approach for the Transfer Learning MI task by exploring the minimization of mutual information through IVA applied to motor imagery. The results show a high correlation and small standard deviation cross-subjects. |
---|---|
AbstractList | Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic proposes. Independent Component Analysis (ICA) is a set of techniques with a solid framework and is widely used in the signal processing area. Inspired by ICA, Independent Vector Analysis (IVA) is an extension of the problem for multiple datasets and explores the correlation between different datasets through the use of Mutual Information (Mutinf). The statistical dependency between datasets through Mutinf could help in MI classification since it allows a generic and homogeneous treatment of the whole data and a possible knowledge transfer between patients. This paper proposes an innovative approach for the Transfer Learning MI task by exploring the minimization of mutual information through IVA applied to motor imagery. The results show a high correlation and small standard deviation cross-subjects. |
Author | Fantinato, Denis G. Moraes, Caroline P. A. Neves, Aline |
Author_xml | – sequence: 1 givenname: Caroline P. A. surname: Moraes fullname: Moraes, Caroline P. A. email: caroline.moraes@ufabc.edu.br organization: Federal University of ABC (UFABC),Center for Engineering, Modeling and Applied Social Sciences,Santo André,Brazil – sequence: 2 givenname: Denis G. surname: Fantinato fullname: Fantinato, Denis G. organization: State University of Campinas (UNICAMP),Department of Computer Engineering and Industrial Automation,Campinas,Brazil – sequence: 3 givenname: Aline surname: Neves fullname: Neves, Aline organization: Federal University of ABC (UFABC),Center for Engineering, Modeling and Applied Social Sciences,Santo André,Brazil |
BookMark | eNo1kE1Lw0AYhFdRsNb8Aw8LnlP3O_seY6gaqLZg67XsJu_WhTYpmyL03xtQTzMMwwMzt-Sq6zsk5IGzmZDA4XG--ahX1VJbq9RMMCFnnAkLoOUFyaCwoIzSIA1jl2QiWGFyroy-IdkwRD82mS04MxOyKul7_417Wh6PqXfNFw19ouvkuiFgogt0qYvdjr71pzGvD26H6UyrvRs5ITbuFPuOPrkBWzqa-rO8I9fB7QfM_nRKNs_zdfWaL5YvdVUu8sg5nHJpORhvhFNgWfAa2kJqaT0PDlrZKmGdh6DHGbyVNmiBCrUG7w1nqjEop-T-lxsRcXtM8eDSeft_gvwBmrZTBQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/EUSIPCO58844.2023.10289953 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9789464593600 9464593601 |
EISSN | 2076-1465 |
EndPage | 1214 |
ExternalDocumentID | 10289953 |
Genre | orig-research |
GrantInformation_xml | – fundername: Paulo Research Foundation (FAPESP) grantid: 88887.595656/2020-00 funderid: 10.13039/501100001807 |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-38196b62a4980fb59d73538b1fa9d3d428ab9f59461d38f52e4e559bb6104c6e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:36:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-38196b62a4980fb59d73538b1fa9d3d428ab9f59461d38f52e4e559bb6104c6e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10289953 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-4 |
PublicationDateYYYYMMDD | 2023-09-04 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2023 31st European Signal Processing Conference (EUSIPCO) |
PublicationTitleAbbrev | EUSIPCO |
PublicationYear | 2023 |
Publisher | EURASIP |
Publisher_xml | – name: EURASIP |
SSID | ssib028087106 ssib025355106 |
Score | 1.8462615 |
Snippet | Motor imagery (MI) classification based on electroencephalogram (EEG) signals performs an important role in neurological rehabilitation for therapeutic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1210 |
SubjectTerms | Brain-Computer Interface Correlation Electroen-cephalogram Electroencephalography Independent Vector Analysis Minimization Motor Imagery Signal processing Signal processing algorithms Solids Transfer learning |
Title | A Novel Approach for Transfer Learning Motor Imagery Classification Based on IVA |
URI | https://ieeexplore.ieee.org/document/10289953 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPvBPQ13dJc1jzOsbEJmwOd7G00l4roVpFO0F_vSdZ6A8G3UGgJOSXf-ZLzfQehCw0YZADaiTSJJNzGKVGQ5hNNpUyocG1jvN55NJaDKb-aiVkpVg9aGOdcKD5zkR-Gu3ybm5U_Kmt6MFRKsBqqAXNbi7WqnycWgJzfrgzjpAVcoCU30Xkod1ZUNXvTm-Gke-21mf44JWZR9cUfvVUCtPS30bia1Lqi5DFaFToy77_8Gv896x3U-FLx4cknPu2iDbfcQ5MOHuev7gl3SjNxDFkrDogF7-DSbvUej3Ig43i48BYXbzi0zvRFRSGO-BKgz2IYDO86DTTt9267A1J2VSAPlKqCeIomtYxTrpJWpoWybQa7nqZZqiyzQEdSrTKhuKSWJZmIHXdAO7SGRIsb6dg-qi_zpTtA2AhI5wzsComWXGqmrZI0E4ybtndAZYeo4Zdj_rw2zphXK3H0x_NjtOWjEkq4-AmqFy8rdwqYX-izEOsP5o6nQQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3AX1ttzQfax7n2Fh1qwM38W00aSqiriKdoL_em6z1CwTfQqEl5Jace5NzzkXoTAEGaYB2T-hQeCwNEk9Cmu8pIkRIuGlpbfXOw1j0J-zilt-WYnWnhTHGOPKZ8e3Q3eWnuZ7bo7KGBUMpOV1GKwD8nCzkWtXvE3DAzm-XhkHYhGqgKVbRqSM8SyIb3cl1NOpcWXWmPVAJqF9980d3FQcuvQ0UV9NacEoe_HmhfP3-y7Hx3_PeRPUvHR8efSLUFloys200auM4fzWPuF3aiWPIW7HDLHgHl4ard3iYQzmOoydrcvGGXfNMSytykcTnAH4phkF0066jSa877vS9sq-Cd0-ILDxbpAklgoTJsJkpLtMWhX1PkSyRKU2hIEmUzLhkgqQ0zHhgmIHCQylItZgWhu6g2iyfmV2ENYeETsO-ECrBhKIqlYJknDLdsh6odA_V7XJMnxfWGdNqJfb_eH6C1vrj4WA6iOLLA7RuI-QIXewQ1YqXuTmCDKBQxy7uH9V_qoo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+31st+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=A+Novel+Approach+for+Transfer+Learning+Motor+Imagery+Classification+Based+on+IVA&rft.au=Moraes%2C+Caroline+P.+A.&rft.au=Fantinato%2C+Denis+G.&rft.au=Neves%2C+Aline&rft.date=2023-09-04&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1210&rft.epage=1214&rft_id=info:doi/10.23919%2FEUSIPCO58844.2023.10289953&rft.externalDocID=10289953 |