A Low-Rank Algorithm Based on Riemannian Optimization for Optimal Power Flow Problem

The optimal power flow (OPF) problem is essentially a mathematical programming that aims to seek an optimal operation condition subject to network and physical constraints. The semidefinite programming (SDP) relaxation has emerged as a popular technique to solve the OPF problem, but it often finds a...

Full description

Saved in:
Bibliographic Details
Published in2023 3rd Power System and Green Energy Conference (PSGEC) pp. 388 - 392
Main Authors Huang, Shengquan, Bai, Xiaoqing, Shang, Qinghua, Wang, Rui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The optimal power flow (OPF) problem is essentially a mathematical programming that aims to seek an optimal operation condition subject to network and physical constraints. The semidefinite programming (SDP) relaxation has emerged as a popular technique to solve the OPF problem, but it often finds a high-rank solution and encounters difficulties in obtaining an exact solution for mesh network. Therefore, this paper utilizes a Riemannian optimization method to solve the low-rank optimal solution for OPF problem via SDP. Firstly, a Burer-Monteiro factorization-based augmented Lagrangian method is applied to the standard SDP of OPF. Then, the Riemannian gradient and Hessian are derived to solve the subproblem with the Riemannian trust-region method. Finally, the strategy for escaping from saddle points and the technique that adjusts the parameters for solving a low-rank solution are given. The simulation results verify the accuracy of the proposed algorithm can obtain a lower-rank solution compared to other advanced SDP solvers.
AbstractList The optimal power flow (OPF) problem is essentially a mathematical programming that aims to seek an optimal operation condition subject to network and physical constraints. The semidefinite programming (SDP) relaxation has emerged as a popular technique to solve the OPF problem, but it often finds a high-rank solution and encounters difficulties in obtaining an exact solution for mesh network. Therefore, this paper utilizes a Riemannian optimization method to solve the low-rank optimal solution for OPF problem via SDP. Firstly, a Burer-Monteiro factorization-based augmented Lagrangian method is applied to the standard SDP of OPF. Then, the Riemannian gradient and Hessian are derived to solve the subproblem with the Riemannian trust-region method. Finally, the strategy for escaping from saddle points and the technique that adjusts the parameters for solving a low-rank solution are given. The simulation results verify the accuracy of the proposed algorithm can obtain a lower-rank solution compared to other advanced SDP solvers.
Author Bai, Xiaoqing
Shang, Qinghua
Huang, Shengquan
Wang, Rui
Author_xml – sequence: 1
  givenname: Shengquan
  surname: Huang
  fullname: Huang, Shengquan
  email: 2212392044@st.gxu.edu.cn
  organization: Guangxi University,Key Laboratory of Guangxi Electric Power System Optimization and Energy-Saving Technology,Nanning,Guangxi,China
– sequence: 2
  givenname: Xiaoqing
  surname: Bai
  fullname: Bai, Xiaoqing
  email: baixq@gxu.edu.cn
  organization: Guangxi University,Key Laboratory of Guangxi Electric Power System Optimization and Energy-Saving Technology,Nanning,Guangxi,China
– sequence: 3
  givenname: Qinghua
  surname: Shang
  fullname: Shang, Qinghua
  email: 2112392073@st.gxu.edu.cn
  organization: Guangxi University,Key Laboratory of Guangxi Electric Power System Optimization and Energy-Saving Technology,Nanning,Guangxi,China
– sequence: 4
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  email: 2112392095@st.gxu.edu.cn
  organization: Guangxi University,Key Laboratory of Guangxi Electric Power System Optimization and Energy-Saving Technology,Nanning,Guangxi,China
BookMark eNo1j81Kw0AURkfQhda-gYt5gcT5ySRzlzG0tRBoqHVdJpMbHUxmyjQQ9OktVFcHzuLwfQ_k1gePhFDOUs4ZPDdvm1WldMZ5KpiQKWdCKZDZDVlCAVoqJjPGAO7JoaR1mJO98V-0HD5CdNPnSF_MGTsaPN07HI33zni6O01udD9mchffh3gVZqBNmDHS9RBm2sTQDjg-krveDGdc_nFB3terQ_Wa1LvNtirrxHEOUyIl6w3k1jKdc8Mw6yzvMRe2QJtLqRkUArNWWaFAWQvQgtLQMrS9km2n5YI8XbsOEY-neJkTv4__Z-UvGd9PIg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PSGEC58411.2023.10255934
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350340099
EndPage 392
ExternalDocumentID 10255934
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-330fa96cc0861a0e4dc1fe62c7ec63380972e4b5c2595cc99b9589b0ecf53bd83
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:15 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-330fa96cc0861a0e4dc1fe62c7ec63380972e4b5c2595cc99b9589b0ecf53bd83
PageCount 5
ParticipantIDs ieee_primary_10255934
PublicationCentury 2000
PublicationDate 2023-Aug.
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.
PublicationDecade 2020
PublicationTitle 2023 3rd Power System and Green Energy Conference (PSGEC)
PublicationTitleAbbrev PSGEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8425231
Snippet The optimal power flow (OPF) problem is essentially a mathematical programming that aims to seek an optimal operation condition subject to network and physical...
SourceID ieee
SourceType Publisher
StartPage 388
SubjectTerms Convex functions
Lagrangian functions
Load flow
low-rank solution
Mesh networks
optimal power flow
Power systems
Riemannian optimization
semidefinite programming
Simulation
Title A Low-Rank Algorithm Based on Riemannian Optimization for Optimal Power Flow Problem
URI https://ieeexplore.ieee.org/document/10255934
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5bmzbpluMcm0N0jrnBbqN5fdWxrR3SMfCvN69dFQXBWwmlDS8kL1_yfe9j7MYTIMH44DQTkuR4YNfBUMUOqBAl-CaRhRnM0yDsT-TDVE13YvVCC4OIBfkMXXos7vLjDDZ0VGZnOG2AA1ljNYvcSrFWxc7x9O3w5b7bsQlVEO7zA7d6_YdxSpE3egdsUP2xpIss3E1uXPj4VYzx3106ZI1viR4ffiWfI7aH6TEbt_ljtnVGUbrg7eVrZoH_24rf2UQV8yzlozmuyKIoSvmzXSlWOwkmt_vWsiFa8iG5pvHeMtvS58lrpsEmve6403d2tgnOXAidO0HgJZEOASxaEZGHMgaRYOhDEyG0iJQK9qA0CizyUQBaG61a2ngIiQpM3ApOWD3NUjylyEqNKqa7NAuhYx1potBgE0QkJEh1xhoUktm6rIwxq6Jx_kf7BdunkSkJdJesnr9v8Mom9dxcF4P5CQnEoeA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1c93aQY9IQFRAgpB4I-3bmxJgM2aExL_edmMaTUy8LU22Na9pv37t-95HyJXHgIP2wanFVpLjgVkHQxE5IELk4OuY52YwvX7YGfP7Z_G8FqvnWhhEzJPP0LWP-V1-lMLSHpWZGW43wAHfJFsG-IVfyLXK_BxPXg-ebltNA6nMMj8_cMsXflin5MjR3iX98p9FwsjMXWbahY9f5Rj_3ak9Uv0W6dHBF_zskw1MDsioQbvpyhmqZEYb85fUUP_XBb0xUBXRNKHDKS6sSZFK6KNZKxZrESY1O9eiQc3pwPqm0fY8XdnPW7eZKhm3W6Nmx1kbJzhTxmTmBIEXKxkCGL7ClIc8AhZj6EMNITSc1JbsQa4FGO4jAKTUUtSl9hBiEeioHhySSpImeGQjyyWKyN6mGRIdSSVtEg3WgCnGgYtjUrUhmbwVtTEmZTRO_mi_JNudUa876d71H07Jjh2lIp3ujFSy9yWeG4jP9EU-sJ-vO6Uq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+Power+System+and+Green+Energy+Conference+%28PSGEC%29&rft.atitle=A+Low-Rank+Algorithm+Based+on+Riemannian+Optimization+for+Optimal+Power+Flow+Problem&rft.au=Huang%2C+Shengquan&rft.au=Bai%2C+Xiaoqing&rft.au=Shang%2C+Qinghua&rft.au=Wang%2C+Rui&rft.date=2023-08-01&rft.pub=IEEE&rft.spage=388&rft.epage=392&rft_id=info:doi/10.1109%2FPSGEC58411.2023.10255934&rft.externalDocID=10255934