Cloud-Based Road Safety for Real-Time Vehicle Rash Driving Alerts with Random Forest Algorithm

The cloud-based road safety technology introduced in this research improves real-time vehicle behavior monitoring and warns for rash driving. It uses cloud computing to gather and interpret data from onboard car sensors and other traffic monitoring equipment. Powerful machine learning technology the...

Full description

Saved in:
Bibliographic Details
Published in2024 3rd International Conference for Innovation in Technology (INOCON) pp. 1 - 6
Main Authors M, Presitha Aarthi, Reddy, Chilukala Mahender, Anbarasi, A., Mohankumar, N., M.V, Ishwarya, Murugan, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cloud-based road safety technology introduced in this research improves real-time vehicle behavior monitoring and warns for rash driving. It uses cloud computing to gather and interpret data from onboard car sensors and other traffic monitoring equipment. Powerful machine learning technology the Random Forest (RF) algorithm analyses this data intelligently. The RF algorithm is trained on a varied array of driving metrics to detect rash driving tendencies. Real-time data streams may be processed efficiently and scalable on the cloud, enabling speedy decision-making for rash driving detection. A network sends alerts to authorities and nearby vehicles. The system is adaptable to different road conditions, resistant to sensor data noise, and able to enhance rash driving detection accuracy via model updates. Cloud architecture makes the system available worldwide. With its focus on real-time notifications utilizing the RF algorithm, this cloud-based road safety system may reduce the hazards of reckless driving and avoid accidents.
AbstractList The cloud-based road safety technology introduced in this research improves real-time vehicle behavior monitoring and warns for rash driving. It uses cloud computing to gather and interpret data from onboard car sensors and other traffic monitoring equipment. Powerful machine learning technology the Random Forest (RF) algorithm analyses this data intelligently. The RF algorithm is trained on a varied array of driving metrics to detect rash driving tendencies. Real-time data streams may be processed efficiently and scalable on the cloud, enabling speedy decision-making for rash driving detection. A network sends alerts to authorities and nearby vehicles. The system is adaptable to different road conditions, resistant to sensor data noise, and able to enhance rash driving detection accuracy via model updates. Cloud architecture makes the system available worldwide. With its focus on real-time notifications utilizing the RF algorithm, this cloud-based road safety system may reduce the hazards of reckless driving and avoid accidents.
Author M.V, Ishwarya
M, Presitha Aarthi
Anbarasi, A.
Reddy, Chilukala Mahender
Mohankumar, N.
Murugan, S.
Author_xml – sequence: 1
  givenname: Presitha Aarthi
  surname: M
  fullname: M, Presitha Aarthi
  email: presithacse@gmail.com
  organization: Shree Sathyam College of Engineering and Technology,Department of Computer Science and Engineering,Salem,Tamil Nadu,India
– sequence: 2
  givenname: Chilukala Mahender
  surname: Reddy
  fullname: Reddy, Chilukala Mahender
  email: mahender.chilukala@gmail.com
  organization: GITAM University,Department of Computer Science and Engineering,Hyderabad,Telangana,India
– sequence: 3
  givenname: A.
  surname: Anbarasi
  fullname: Anbarasi, A.
  email: anbarasi.a@gmail.com
  organization: SRM Institute of Science and Technology,School of Computing,Department of Computing Technologies,Chennai,Tamil Nadu,India
– sequence: 4
  givenname: N.
  surname: Mohankumar
  fullname: Mohankumar, N.
  email: mohankumar.n@bvrit.ac.in
  organization: B.V. Raju Institute of Technology,Department of Electronics and Communication Engineering,Hyderabad,Telangana,India
– sequence: 5
  givenname: Ishwarya
  surname: M.V
  fullname: M.V, Ishwarya
  email: aidshod@act.edu.in
  organization: Agni College of Technology,Artificial Intelligence and Data Science Department,Chennai,Tamil Nadu,India
– sequence: 6
  givenname: S.
  surname: Murugan
  fullname: Murugan, S.
  email: smuresjur@gmail.com
  organization: Saveetha University,Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,Department of Biomedical Engineering,Chennai,Tamil Nadu,India
BookMark eNo1j8FKxDAYhCPoQdd9Aw_xAVr_NE3THNfq6sKyhbp6dEmbP9tA20halX17C-plBuZjBuaKnA9-QEJuGcSMgbrb7Mqi3GUgRRonkKQxA8EYZ9kZWSqpci6A50wBXJL3ovOfJrrXIxpaeW3oi7Y4naj1gVaou2jveqRv2LqmQ1rpsaUPwX254UhXHYZppN9uamcwGN_TtQ84TjM5-jDH_TW5sLobcfnnC_K6ftwXz9G2fNoUq23kGFNTlNjcSKEAAVKWN3XDDW-4zYXVNa-TjGXWSCuEqQ03NqlxFpQg55IV0CBfkJvfXYeIh4_geh1Oh__b_Af3J1OA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INOCON60754.2024.10511316
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350381900
9798350381931
EndPage 6
ExternalDocumentID 10511316
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-2f8d7590e00418cbc3d3c3f85fab3b2616fd7f55dbd3df2bedf2e707d75f50ce3
IEDL.DBID RIE
IngestDate Wed May 22 07:08:29 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-2f8d7590e00418cbc3d3c3f85fab3b2616fd7f55dbd3df2bedf2e707d75f50ce3
PageCount 6
ParticipantIDs ieee_primary_10511316
PublicationCentury 2000
PublicationDate 2024-March-1
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-1
  day: 01
PublicationDecade 2020
PublicationTitle 2024 3rd International Conference for Innovation in Technology (INOCON)
PublicationTitleAbbrev INOCON
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.040517
Snippet The cloud-based road safety technology introduced in this research improves real-time vehicle behavior monitoring and warns for rash driving. It uses cloud...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accident Prevention
Alert Generation
Cloud computing
Cloud Infrastructure
Driving Parameters
Machine learning algorithms
Pattern Identification
Radio frequency
Real-time systems
Road safety
Technological innovation
Transportation
Title Cloud-Based Road Safety for Real-Time Vehicle Rash Driving Alerts with Random Forest Algorithm
URI https://ieeexplore.ieee.org/document/10511316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26B_FJxYl3Ivia2ubSy6NOx_Shk-lkT45c3XBrpWsf9NebtJuiIPhSStLSkrScLyffOR8A5xhLIiknKBYxc2yVQIlmGFFuuEWXJKGqdvtMw96Q3o3YaClWr7UwWus6-Ux77rTey1e5rBxVZv9wGx6QIFwH63bl1oi1NsDZ0jfz4jbtd_ppaEHQkSWYeqvrf1ROqYGjuwXS1SObfJFXryqFJz9-uTH--522Qftbowfvv9BnB6zpbBc8d2Z5pdCVhSYFBzlX8IEbXb5DG5rCgY0JkZN8wCc9cZ8LHPDFBF4XU0cqwMuZLsoFdMSs7chUPoeubueitD0veWGb520w7N48dnpoWUEBTYMgKRE2sYpY4mtnqxVLIYkikpiYGS6IsIun0KjIMKaEIspgoe1BR35kbzLMl5rsgVaWZ3ofQG6B3phQxoRGVAmaUJlohf1YmMAQiQ9A2w3O-K0xyRivxuXwj_YjsOnmqEnnOgatsqj0icX3UpzW8_oJm2KmwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06QX1SceLdCL6mtk3Sy6NOx9TZydxkT47m5oZbK137oL_epN0UBcGXEhJCS9Jwvp5-53wAnLkux5zEGAUsoIatYiiU1EUkVrFGlzAkonT7jLxWn9wO6GAuVi-1MFLKMvlMWqZZ_ssXKS8MVaZPuA4PsOMtgxUN_NSp5Fqr4HTunHl-E3UancjTMGjoEpdYixk_aqeU0NHcANHiplXGyKtV5MziH7_8GP_9VJug_q3Sgw9f-LMFlmSyDZ4bk7QQ6FKDk4DdNBbwMVYyf4c6OIVdHRUiI_qAT3JkXhjYjWcjeJWNDa0ALyYyy2fQULN6IBHpFJrKnbNcj7ykme6e1kG_ed1rtNC8hgIaO06YI1cFwqehLY2xVsAZxwJzrAKqYoaZ_nzylPAVpYIJLJTLpL5I3_b1JEVtLvEOqCVpIncBjDXUK-XxABOfCEZCwkMpXDtgylGYu3ugbhZn-FbZZAwX67L_R_8JWGv17tvD9k10dwDWzX5VyV2HoJZnhTzSaJ-z43KPPwF9K6oK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+3rd+International+Conference+for+Innovation+in+Technology+%28INOCON%29&rft.atitle=Cloud-Based+Road+Safety+for+Real-Time+Vehicle+Rash+Driving+Alerts+with+Random+Forest+Algorithm&rft.au=M%2C+Presitha+Aarthi&rft.au=Reddy%2C+Chilukala+Mahender&rft.au=Anbarasi%2C+A.&rft.au=Mohankumar%2C+N.&rft.date=2024-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FINOCON60754.2024.10511316&rft.externalDocID=10511316