An Efficient Resampling Technique for Financial Statements Fraud Detection: A Comparative Study

Financial statement fraud detection is the process of identifying falsified financial statements. Traditional auditing methods are time-consuming, expensive, and subject to error. Therefore, adopting an efficient and robust machine learning mechanism is important. Unfortunately, the current data sou...

Full description

Saved in:
Bibliographic Details
Published in2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) pp. 1 - 7
Main Authors Ashtiani, Matin N., Raahemi, Bijan
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Financial statement fraud detection is the process of identifying falsified financial statements. Traditional auditing methods are time-consuming, expensive, and subject to error. Therefore, adopting an efficient and robust machine learning mechanism is important. Unfortunately, the current data sources suffer from a severe class imbalance. The lack of sufficient fraudulent financial statement records inspires the use of various resampling techniques. This paper a) examines the efficiency of different resampling strategies to detect fraudulent financial statements while employing multi-layer feedforward neural networks, support vector machines, and naïve Bayes machine learning models, and b) investigates the superiority of using Raw Accounting Variables (RAVs) over financial ratios for financial statement fraud detection. A benchmark dataset of numerical financial variables (RAVs and financial ratios) is used as features for model evaluation. The fraud labels correspond to the Accounting and Auditing Enforcement Releases by the U.S. Securities and Exchange Commission (SEC). We analyze the performance of the models on 28 RAVs and 14 financial ratios suggested by accounting experts. Using the area under the receiver operating characteristic curve (AUC) as the performance metric, the synthetic minority oversampling technique (SMOTE), along with a three-layer feedforward neural network (AUC: 0.863), greatly outperformed the RUSBoost (AUC: 0.717) model.
AbstractList Financial statement fraud detection is the process of identifying falsified financial statements. Traditional auditing methods are time-consuming, expensive, and subject to error. Therefore, adopting an efficient and robust machine learning mechanism is important. Unfortunately, the current data sources suffer from a severe class imbalance. The lack of sufficient fraudulent financial statement records inspires the use of various resampling techniques. This paper a) examines the efficiency of different resampling strategies to detect fraudulent financial statements while employing multi-layer feedforward neural networks, support vector machines, and naïve Bayes machine learning models, and b) investigates the superiority of using Raw Accounting Variables (RAVs) over financial ratios for financial statement fraud detection. A benchmark dataset of numerical financial variables (RAVs and financial ratios) is used as features for model evaluation. The fraud labels correspond to the Accounting and Auditing Enforcement Releases by the U.S. Securities and Exchange Commission (SEC). We analyze the performance of the models on 28 RAVs and 14 financial ratios suggested by accounting experts. Using the area under the receiver operating characteristic curve (AUC) as the performance metric, the synthetic minority oversampling technique (SMOTE), along with a three-layer feedforward neural network (AUC: 0.863), greatly outperformed the RUSBoost (AUC: 0.717) model.
Author Raahemi, Bijan
Ashtiani, Matin N.
Author_xml – sequence: 1
  givenname: Matin N.
  surname: Ashtiani
  fullname: Ashtiani, Matin N.
  email: mnaja036@uottawa.ca
  organization: University of Ottawa,Knowledge Discovery and Data Mining Laboratory,Telfer School of Management,Ottawa,Canada
– sequence: 2
  givenname: Bijan
  surname: Raahemi
  fullname: Raahemi, Bijan
  email: braahemi@uottawa.ca
  organization: University of Ottawa,Knowledge Discovery and Data Mining Laboratory,Telfer School of Management,Ottawa,Canada
BookMark eNo1j8FOhDAURWuiCx3nD1w07sH2FYbWHamgk4wx0XFNCrxqEygIxWT-XhJ1dTYnJ_dekXM_eCTklrOYc6bu9rrQ-rlIMylYDAxEzBmkgsv0jGxVpqRImQBQGVySKve0sNY1Dn2grzibfuyc_6BHbD69-1qQ2mGipfPGN8509C2YgP0qz7SczNLSBwzYBDf4e5pTPfSjmUxw37iaS3u6JhfWdDNu_7gh72Vx1E_R4eVxr_ND5DhXIQLcQVK3TK2jORibKs6tEgIzBhaksolkaZsoI2qleCshk7VN6pq1u9oAMrEhN79dh4jVOLneTKfq_7f4AclgUzg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICECCME57830.2023.10253185
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350322972
EndPage 7
ExternalDocumentID 10253185
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-2e624bd0957812af5911f933e702f289f4805d49a3b991d8278bf4bb0d6ba2e03
IEDL.DBID RIE
IngestDate Wed Sep 27 05:40:30 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-2e624bd0957812af5911f933e702f289f4805d49a3b991d8278bf4bb0d6ba2e03
PageCount 7
ParticipantIDs ieee_primary_10253185
PublicationCentury 2000
PublicationDate 2023-July-19
PublicationDateYYYYMMDD 2023-07-19
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-19
  day: 19
PublicationDecade 2020
PublicationTitle 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
PublicationTitleAbbrev ICECCME
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8413825
Snippet Financial statement fraud detection is the process of identifying falsified financial statements. Traditional auditing methods are time-consuming, expensive,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Data models
Feature extraction
Financial Ratios
Financial Statement
Fraud
Fraud Detection
Neural Networks
Resampling Techniques
Soft sensors
Support vector machines
Synthetic Minority Oversampling Technique (SMOTE)
Transformers
Title An Efficient Resampling Technique for Financial Statements Fraud Detection: A Comparative Study
URI https://ieeexplore.ieee.org/document/10253185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA1uJ08qTvwmB6-t-epHvI3aMYUNkQ12G0nzi4jQibYH_etNstWhIHgrgdCQtH0v6Xvvh9AVrZiyDugja9MqEpKZSJOKRJoTrwJUILX3Dk-m6Xgu7hfJYmNWD14YAAjiM4j9ZfiXb1ZV64_K3BvOEu_27aGe27mtzVqbIFFK5PVdURbFpHTPICexLwsedx1-lE4JyDHaQ9PunmvByEvcNjquPn_FMf57UPtosDXp4Ydv-DlAO1AfouWwxmVIhXCd8CO8K68Yr5_wrMtqxY6l4lGXs4ED2Qw2N-w4bGvwLTRBnVXf4CEuttng2CsOPwZoPipnxTja1FCInimVTcQgZUIbR6QyB-XKJu7jZiXnkBFm3WbLipwkRkjFtWOKJmdZrq3QmphUKwaEH6F-varhGGFlZE6TSjJQiUgZ5LmhijPjKJzKdFqdoIGfneXrOiZj2U3M6R_tZ2jXL5I_KKXyHPWbtxYuHMI3-jKs7BcE7Kb-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dS8MwFA1zPuiTihO_zYM-tqbpxxrBh9F1bO4DkQ32VpMmFRE6cS0y_4t_xd_mTbduKPg48K30ISS9Cffc9JxzEbq0YsoTSPRGknix4TAqDUFiYgibaBYgV0xo7XB_4LVHzt3YHVfQ51ILo5QqyGfK1I_Fv3w5iXN9VQYnnLpa7bvgUHbV7B0qtOltpwnhvKK0FQ6DtrFoImA8WxbLDKo86ggJSKIOuYwnLpzuBKp4VSc0gWojcXziSodxWwBUkj6t-yJxhCDSE5wqYsO4G2gTgIZL5_KwhXWpRdh1JwiDoB_C0DYxdSNys5zij2YtRa5q7aCvcpVzisqLmWfCjD9-GUD-28-wi2orGSK-XybYPVRR6T6KGikOC98LmCR-UFOuOfHpEx6WbrQYcDhulU4iuIDThZAPA0rPJW6qrOCfpTe4gYOV-znWnMpZDY3WsrIDVE0nqTpEmEvmW27MqOKu41Hl-9LiNpUAUnldePERquloRK9zI5CoDMTxH-8v0FZ72O9Fvc6ge4K29QbR18IWO0XV7C1XZ4BnMnFe7CqMHtcdv2_H0wKy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Electrical%2C+Computer%2C+Communications+and+Mechatronics+Engineering+%28ICECCME%29&rft.atitle=An+Efficient+Resampling+Technique+for+Financial+Statements+Fraud+Detection%3A+A+Comparative+Study&rft.au=Ashtiani%2C+Matin+N.&rft.au=Raahemi%2C+Bijan&rft.date=2023-07-19&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICECCME57830.2023.10253185&rft.externalDocID=10253185