Optimizing Resource Allocation in Edge Computing to Reduce Delay Based on Multi-Layer Particle Swarm Optimization

With the popularity of Internet of Things (IoT) applications and the explosion of mobile devices, the computation demands of data have increased. All compute requests are sent to a remote cloud server for processing, leading to more delay. The emergence of edge computing (EC) can store and compute d...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 217 - 221
Main Authors Kong, Xiaoman, Yang, Bo, Han, Yamin
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the popularity of Internet of Things (IoT) applications and the explosion of mobile devices, the computation demands of data have increased. All compute requests are sent to a remote cloud server for processing, leading to more delay. The emergence of edge computing (EC) can store and compute data generated by network edge devices directly on that device. Nevertheless, implementing compute-intensive tasks on edge devices with limited storage and compute resources makes task allocation more challenging. The complexity of resource allocation can lead to problems such as system performance degradation and time delay. This paper proposes a resource allocation strategy optimized by multi-layer particle swarm optimization (MLPSO) for edge computing to reduce delay. First, we adopt an EC scenario where multiple mobile users are allocated to multiple edge servers dynamically. Then, to construct the delay minimization model, a non-orthogonal multiple access (NOMA) protocol and resource allocation strategy are adopted, which considers the interference between channels. Finally, the delay minimization model is optimized by using MLPSO, that have great potential to help particle swarms jump out of local optima, enhancing the ability to obtain optimal resource allocation strategy for EC. The simulation results, along with comparisons to other methods, clearly demonstrate the effectiveness of the proposed approach in significantly reducing the delay of the EC model.
AbstractList With the popularity of Internet of Things (IoT) applications and the explosion of mobile devices, the computation demands of data have increased. All compute requests are sent to a remote cloud server for processing, leading to more delay. The emergence of edge computing (EC) can store and compute data generated by network edge devices directly on that device. Nevertheless, implementing compute-intensive tasks on edge devices with limited storage and compute resources makes task allocation more challenging. The complexity of resource allocation can lead to problems such as system performance degradation and time delay. This paper proposes a resource allocation strategy optimized by multi-layer particle swarm optimization (MLPSO) for edge computing to reduce delay. First, we adopt an EC scenario where multiple mobile users are allocated to multiple edge servers dynamically. Then, to construct the delay minimization model, a non-orthogonal multiple access (NOMA) protocol and resource allocation strategy are adopted, which considers the interference between channels. Finally, the delay minimization model is optimized by using MLPSO, that have great potential to help particle swarms jump out of local optima, enhancing the ability to obtain optimal resource allocation strategy for EC. The simulation results, along with comparisons to other methods, clearly demonstrate the effectiveness of the proposed approach in significantly reducing the delay of the EC model.
Author Yang, Bo
Kong, Xiaoman
Han, Yamin
Author_xml – sequence: 1
  givenname: Xiaoman
  surname: Kong
  fullname: Kong, Xiaoman
  email: kongxm0501@foxmail.com
  organization: University of Jinan,Shandong Provincial Key Laboratory of Network-Based Intelligent Computing,Jinan,China,250022
– sequence: 2
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  email: yangbo@ujn.edu.cn
  organization: Computing University of Jinan,Shandong Provincial Key Laboratory of Network-Based Intelligent,Jinan,China,250022
– sequence: 3
  givenname: Yamin
  surname: Han
  fullname: Han, Yamin
  email: hr-hanym@qcl.edu.cn
  organization: Quan Cheng Laboratory,Jinan,Shandong,China,250103
BookMark eNotzctOwzAQhWEjwQJK36ALv0DKjJ04mWUJBSoVirisKzceV5ZyKakjVJ6eAl2dzaf_XInztmtZiAnCFBHo5rlclAYLXUwVKD0FgFSdiTHlVOgMdI6U0qX4XO1iaMJ3aLfylffd0FcsZ3XdVTaGrpWhlXO3ZVl2zW6Ivyp2R-iGI7vj2h7krd2zk0f6NNQxJEt74F6-2D6Gqmb59mX7Rp5O_pLX4sLbes_j047Ex_38vXxMlquHRTlbJgGRYqKst8o5QNQq5RxcakyBFRMoJusZ9Eb5qsodkSeDzmcbq1mZDWEG5I0eicl_NzDzeteHxvaHNUKmyKhC_wCWall_
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCIC61838.2023.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371949
EndPage 221
ExternalDocumentID 10529628
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872419,62072213,61873324,61903156,ZR2022ZD02,ZR2022JQ30,ZR2022ZD01,ZR2020KF006,tsqn201812077,2021GXRC077,QCLZD202303,SYS202201
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-2afa2dd011324e70d46681ce902e9afe03b2fcc7d99f961df5ba3e26b91509f63
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-2afa2dd011324e70d46681ce902e9afe03b2fcc7d99f961df5ba3e26b91509f63
PageCount 5
ParticipantIDs ieee_primary_10529628
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC)
PublicationTitleAbbrev NCIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8541446
Snippet With the popularity of Internet of Things (IoT) applications and the explosion of mobile devices, the computation demands of data have increased. All compute...
SourceID ieee
SourceType Publisher
StartPage 217
SubjectTerms Computational modeling
delay
Delay effects
Delays
edge computing
Minimization
multi-layer particle swarm optimization
resource allocation
Resource management
Servers
Simulation
Title Optimizing Resource Allocation in Edge Computing to Reduce Delay Based on Multi-Layer Particle Swarm Optimization
URI https://ieeexplore.ieee.org/document/10529628
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J08qVvwmB69bk-w2bY5aW6poLWiht5JNJlJst7VsEfvrnWS3ioLgbQlDsswkmZdk3gwhFybhFmGQiRILeEDRDRe1wBmfGRHBroqtk57v_NCXvWFyN2qMSrJ64MIAQAg-g7r_DG_5dm5W_qoMV7h_JRStCqngya0ga5V0OM7UZb9925Y4RX3ElohDHk7xo2hK8BndHdLfjFaEirzWV3laN-tfiRj__Tu7pPZNz6ODL8ezR7Yg2ydvj7j4Z5M1ttDNnTy9mnpf5XVPJxnt2BegRRkHL5XPUdCiaekNTPUHvUaHZimKBlJudK8RjdNBObXo07tezmg5SOiyRobdznO7F5X1FKIJ5yqPhHZaWMt8cfkEmswmUra4AcUEKO2AxalwxjStUk5Jbl0j1TEImSpEjcrJ-IBUs3kGhz4gShncGnCnlCyxTKsUkZ9GdGM5GK7ZEal5fY0XRcqM8UZVx3-0n5BtbzNP8uPNU1LNlys4Q2-fp-fByp8lQqzA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8MwDI5gHOAEiCHe5ADHjibtsuXAAQZoYw8mMaTdRpo4aGIPGJ0m-C_8FX4bTteBQOI4iVsVWalSO_Hnxp9NyJEOmUEYpL3QAAYoKm-9IljtKiMi2JWBscLxnesNUb4Lr9v59gJ5_-LCAECSfAY595jc5ZuhHrtfZbjD3S0hL6Y5lFV4nWCE9nJauUB1HnN-ddkqlb20iYDXZUzGHldWcWN811E9hIJvQiGKTIP0OUhlwQ8ibrUuGCmtFMzYfKQC4CKSCJWkFQHOu0iWEGjk-ZQelhLwmC9PGqVKSeCmcDliPEgqf_IfbVoSL3W1Sj5m65smpzzmxnGU02-_Sj_-2w-wRrLfBETa_HKt62QBBhvk-QaPt373DUfo7NaBnvWcN3bWRbsDemkegE4bVTipeIiCBo2XXkBPvdJzdNmGomhCO_ZqCuMN2kw3D72dqFGfpi9JpsySu7msdZNkBsMBbLmUL6nx8ENfIPzQ-EpGiG0V4jfDQDPlb5Os00_naVoUpDNTzc4f44dkudyq1zq1SqO6S1acvThKIyvskUw8GsM-Yps4OkgsjJL7eWv0E2hhCyM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Optimizing+Resource+Allocation+in+Edge+Computing+to+Reduce+Delay+Based+on+Multi-Layer+Particle+Swarm+Optimization&rft.au=Kong%2C+Xiaoman&rft.au=Yang%2C+Bo&rft.au=Han%2C+Yamin&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=217&rft.epage=221&rft_id=info:doi/10.1109%2FNCIC61838.2023.00042&rft.externalDocID=10529628