Research on Sentiment Analysis of Tibetan Short Text Based on Dual-channel Hybrid Neural Network
In response to the problem of varying degrees of loss of textual semantic information with the increase of model depth in a single-channel hybrid neural network model, this paper proposes a dual-channel hybrid neural network model-ALDCBAT based on the idea of multi-channel hybrid neural network, usi...
Saved in:
Published in | 2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML) pp. 377 - 384 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
04.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to the problem of varying degrees of loss of textual semantic information with the increase of model depth in a single-channel hybrid neural network model, this paper proposes a dual-channel hybrid neural network model-ALDCBAT based on the idea of multi-channel hybrid neural network, using ALBERT pre-training model, convolutional neural network and bidirectional gated unit network. The model first vectorizes Tibetan texts using ALBERT pre-training model, and then inputs the word vectors into the TextCNN model and the BiGRU model respectively. Secondly, an attention mechanism is introduced to enhance the text feature extraction ability of the BiGRU model. Finally, the output of the TextCNN model is concatenated with the output of the BiGRU model and the attention mechanism as the final output. Experimental results show that the classification accuracy of the dual-channel hybrid neural network model proposed in this paper is 91.12%, which partly solves the problem of loss of semantic information and effectively improves the classification accuracy of Tibetan sentiment analysis. |
---|---|
AbstractList | In response to the problem of varying degrees of loss of textual semantic information with the increase of model depth in a single-channel hybrid neural network model, this paper proposes a dual-channel hybrid neural network model-ALDCBAT based on the idea of multi-channel hybrid neural network, using ALBERT pre-training model, convolutional neural network and bidirectional gated unit network. The model first vectorizes Tibetan texts using ALBERT pre-training model, and then inputs the word vectors into the TextCNN model and the BiGRU model respectively. Secondly, an attention mechanism is introduced to enhance the text feature extraction ability of the BiGRU model. Finally, the output of the TextCNN model is concatenated with the output of the BiGRU model and the attention mechanism as the final output. Experimental results show that the classification accuracy of the dual-channel hybrid neural network model proposed in this paper is 91.12%, which partly solves the problem of loss of semantic information and effectively improves the classification accuracy of Tibetan sentiment analysis. |
Author | Luosai, Baima Zhou, Liyuan Nyima, Tashi Qun, Nuo Zhu, Yulei |
Author_xml | – sequence: 1 givenname: Yulei surname: Zhu fullname: Zhu, Yulei email: zhuyulei@utibet.edu.cn organization: Tibet University,School of Information Science and Technology,Lhasa,China – sequence: 2 givenname: Baima surname: Luosai fullname: Luosai, Baima email: LC01010507@163.com organization: Tibet University,School of Information Science and Technology,Lhasa,China – sequence: 3 givenname: Liyuan surname: Zhou fullname: Zhou, Liyuan email: zliyuan@utibet.edu.cn organization: Tibet University,School of Information Science and Technology,Lhasa,China – sequence: 4 givenname: Nuo surname: Qun fullname: Qun, Nuo email: q_nuo@utibet.edu.cn organization: Tibet University,School of Information Science and Technology,Lhasa,China – sequence: 5 givenname: Tashi surname: Nyima fullname: Nyima, Tashi email: nmzx@utibet.edu.cn organization: Tibet University,School of Information Science and Technology,Lhasa,China |
BookMark | eNo1j8tOwzAQRY0ECyj9AyT8Awm2J0ntZSnQIpWHSliXcTNWLVIHOa6gf08QsLlncR_SPWPHoQvE2KUUuZTCXD2vHpalKSeQK6EglwIKDVV1xMZmYjSUAlQBAk7Z24p6wrjZ8i7wFwrJ7wbh04Dtofc97xyvvaWEg7vtYuI1fSV-jT01P42bPbbZZoshUMsXBxt9wx9pH7EdkD67-H7OThy2PY3_OGKvd7f1bJEtn-b3s-ky81KalCndQClBOJQaFEmlC1VSMcGqsE21MaiktaUb3rghaCxVhRa2cYgNoNMORuzid9cT0foj-h3Gw_r_OHwDU6JTbQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PRML59573.2023.10348366 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350324303 |
EndPage | 384 |
ExternalDocumentID | 10348366 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-28d35130fa1832e128425e47a64bd6c9a21bb5f202fd359be6480bdfaad3af8f3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:53 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-28d35130fa1832e128425e47a64bd6c9a21bb5f202fd359be6480bdfaad3af8f3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10348366 |
PublicationCentury | 2000 |
PublicationDate | 2023-Aug.-4 |
PublicationDateYYYYMMDD | 2023-08-04 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML) |
PublicationTitleAbbrev | PRML |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8577095 |
Snippet | In response to the problem of varying degrees of loss of textual semantic information with the increase of model depth in a single-channel hybrid neural... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 377 |
SubjectTerms | Analytical models BiGRU Feature extraction Logic gates Machine learning Neural networks pretraining model Semantics Sentiment analysis TextCNN Tibetan sentiment analysis |
Title | Research on Sentiment Analysis of Tibetan Short Text Based on Dual-channel Hybrid Neural Network |
URI | https://ieeexplore.ieee.org/document/10348366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J08qVnyzB68b2-4jydVHKWJLsS30Vnezs1gsiUhy0F_vTNooCoKnhLBLwgy730zm-2YZu6TSlMaMTaSITkLZ2ItEJ5nwHZ1BFlPhjcTJw5EZzNT9XM83YvVaCwMANfkMIrqta_m-yCr6VYYrXKpEGrPNtjFzW4u1Npytbie9Gj8OH3SqYxnRmeBRM_rHuSk1bPR32ah54Zot8hJVpYuyj1-9GP_9RXus_a3Q4-Mv7NlnW5AfsKeGRseLnE-IBkSzedN3hBeBT5cOMBzkk2cMu_kUd2Z-jTjmacZtZVeChMA5rPjgnaRcnHp32BVearJ4m836d9ObgdicoCCW6INS9BIvNaJUsLRygbCop0HF1ijnTZbaXtc5HdBcAQemDoxKOs4Ha720IQnykLXyIocjxpWF4DxIiwGHsikkJkhFyYu2ppul_pi1yTyL13WTjEVjmZM_np-yHfJSzaVTZ6xVvlVwjvheuovar58hEqbf |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Cauq5J2l79MapuY7gOdptJ84LD0Yq0B_3rzetWRUHw1FISWt4j-V76vu89Qi4wNSXciY3FDp0YV6FhkYgyZjoigyzExBuKkwdDmUz4_VRMV2L1WgsDADX5DDy8rXP5psgq_FXmVnjAo0DKdbLhgF_4S7nWirXld-LL0eOgL2IRBh52Bfea8T86p9TA0dsmw-aVS77Ii1eV2ss-flVj_Pc37ZD2t0aPjr7QZ5esQb5HnhoiHS1yOkYiEM6mTeURWliazjW4gJCOn13gTVO3N9Mrh2QGZ9xUasFQCpzDgibvKOaiWL1DLdylpou3yaR3m14nbNVDgc2dF0rWjUwgHE5ZhWsXEI26AnioJNdGZrHq-loL68xl3cBYg-RRRxurlAmUjWywT1p5kcMBoVyB1QYC5UIOrmKIpA04Hl-Ekn4Wm0PSRvPMXpdlMmaNZY7-eH5ONpN00J_174YPx2QLPVYz6_gJaZVvFZw6tC_1We3jTwP7qig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+4th+International+Conference+on+Pattern+Recognition+and+Machine+Learning+%28PRML%29&rft.atitle=Research+on+Sentiment+Analysis+of+Tibetan+Short+Text+Based+on+Dual-channel+Hybrid+Neural+Network&rft.au=Zhu%2C+Yulei&rft.au=Luosai%2C+Baima&rft.au=Zhou%2C+Liyuan&rft.au=Qun%2C+Nuo&rft.date=2023-08-04&rft.pub=IEEE&rft.spage=377&rft.epage=384&rft_id=info:doi/10.1109%2FPRML59573.2023.10348366&rft.externalDocID=10348366 |