Spiking-Timing-Dependent Plasticity Convolutional Spiking Neural Network for Efficient Radar-Based Gesture Recognition
An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire...
Saved in:
Published in | 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) pp. 617 - 620 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire (LIF) model is employed as a neuron in the network nodes. This design enables efficient accumulation and transmission of spike signals, resulting in a significant reduction in network power consumption. Furthermore, the unsupervised learning algorithm of STDP is employed to facilitate feature extraction in the established CSNN, ensuring low computational complexity. The experimental results demonstrate that the proposed STDP-CSNN architecture achieves an impressive recognition accuracy of 92.72%, while concurrently addressing the crucial requirements of low power consumption and computational simplicity. |
---|---|
AbstractList | An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire (LIF) model is employed as a neuron in the network nodes. This design enables efficient accumulation and transmission of spike signals, resulting in a significant reduction in network power consumption. Furthermore, the unsupervised learning algorithm of STDP is employed to facilitate feature extraction in the established CSNN, ensuring low computational complexity. The experimental results demonstrate that the proposed STDP-CSNN architecture achieves an impressive recognition accuracy of 92.72%, while concurrently addressing the crucial requirements of low power consumption and computational simplicity. |
Author | Hu, Taiyang Wu, Li Xiao, Zelong Wu, Yifan |
Author_xml | – sequence: 1 givenname: Yifan surname: Wu fullname: Wu, Yifan email: wuyifan@njust.edu.cn organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China – sequence: 2 givenname: Li surname: Wu fullname: Wu, Li email: li_wu@njust.edu.cn organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China – sequence: 3 givenname: Zelong surname: Xiao fullname: Xiao, Zelong email: zelongxiao@njust.edu.cn organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China – sequence: 4 givenname: Taiyang surname: Hu fullname: Hu, Taiyang email: Sun1983hu@126.com organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China |
BookMark | eNo1kM9OAjEYxGuiB__wBh7qAyz225bd7VFXRBJEg3gm3fYraVha0i0Y3t4l4mkyk_nNYW7IpQ8eCXkANgRg8nFaT-v3WcGggGHOcj4EJnJR8eqCDGQpKz5inIOA8pocvnZu4_w6W7rtSV5wh96gT_SzVV1y2qUjrYM_hHafXPCqpWeCznEfezvH9BPihtoQ6djanjjRC2VUzJ5Vh4ZOsEv7iHSBOqy9O83ckSur2g4HZ70l36_jZf2WzT4m0_ppljkAmTKwXGipK8G0LbhmXBs1EthIxNJAY03TNErwwjJWFlr2GWhRQl9sRoarnN-S-79dh4irXXRbFY-r_zv4L-S6XdY |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICML60161.2023.10424838 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350331417 |
EndPage | 620 |
ExternalDocumentID | 10424838 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-1f34c9c840cf63c03cda54eb9ee7d1bfdbbba436f0076c97d11c471c03b5d3a23 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:50:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-1f34c9c840cf63c03cda54eb9ee7d1bfdbbba436f0076c97d11c471c03b5d3a23 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10424838 |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov.-3 |
PublicationDateYYYYMMDD | 2023-11-03 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) |
PublicationTitleAbbrev | ICICML |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.859742 |
Snippet | An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 617 |
SubjectTerms | component Computational complexity Computer architecture Convolution Gesture recognition Power demand SNN STDP Training Unsupervised learning |
Title | Spiking-Timing-Dependent Plasticity Convolutional Spiking Neural Network for Efficient Radar-Based Gesture Recognition |
URI | https://ieeexplore.ieee.org/document/10424838 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPvRPA1tWmSXl6dm5u4MeYGexu5VYbSjdIO9NebpK2iIPjWlqQNOSnfOck53wfATSpNaBJQhmicSERD5SMuWIQoEYxJRX3u5HxG43Awp48LtqiL1V0tjNbaJZ9pz166s3y1lqXdKjN_OA1oTOIWaJnIrSrW2gXXNW_m7bA77I6eLL-IDfwC4jXtfyinOODo74Nx88kqX-TVKwvhyY9fbIz_HtMB6HzX6MHJF_ocgh2dHYHt82Zl977RzIp1vaD7WuK2gBPjJdsE6uIdmhds6wXH32DdA1qWDnM7rtLCofFlYc_RS9jeU654ju4M4in4YHCkzDWcNqlH66wD5v3erDtAtbICWmGcFAinhMpEmuBOpiGRPpGKM6pFonWksEiVEIJTEqb2oM5YU2EsDYqZhoIpwgNyDNrZOtMnABoXTiaWx575nGpCRRSmNMVYURXpJA5OQcdO2nJTkWcsm_k6--P5OdiztnPlfuQCtIu81JcG9wtx5ez9CWfusHc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL6mNk3Sy6tzc9OtjLnB3kZulaF0Y7QD_fUmvSgKgm9t6WlDTst3TvKd7wBwk0iTmniUIRpGElFfuYgLFiBKBGNSUZcX7XwGsd-d0Mcpm1bF6kUtjNa6IJ9pxx4We_lqIXO7VGb-cOrRkISbYMsAP8NludY2uK6UM297rV5r0LcKIzb184hTW_zonVJAR2cPxPVLS8bIq5NnwpEfv_QY_z2qfdD8rtKDwy_8OQAbOj0E6-fl3K5-o7Ft1_WC7qsmtxkcmjjZUqizd2gesK4-Of4GKwtodTrMaVwSw6GJZmG7EJiw1iOu-ArdGcxT8MEgSb7ScFSTjxZpE0w67XGri6reCmiOcZQhnBAqI2nSO5n4RLpEKs6oFpHWgcIiUUIITomf2K0640-FsTQ4Zm4UTBHukSPQSBepPgbQBHEyskr2zOVUEyoCP6EJxoqqQEehdwKadtJmy1I-Y1bP1-kf16_ATnc86M_6vfjpDOxaPxbFf-QcNLJVri9MFJCJy8L3n8cxs8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Image+Processing%2C+Computer+Vision+and+Machine+Learning+%28ICICML%29&rft.atitle=Spiking-Timing-Dependent+Plasticity+Convolutional+Spiking+Neural+Network+for+Efficient+Radar-Based+Gesture+Recognition&rft.au=Wu%2C+Yifan&rft.au=Wu%2C+Li&rft.au=Xiao%2C+Zelong&rft.au=Hu%2C+Taiyang&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=617&rft.epage=620&rft_id=info:doi/10.1109%2FICICML60161.2023.10424838&rft.externalDocID=10424838 |