Spiking-Timing-Dependent Plasticity Convolutional Spiking Neural Network for Efficient Radar-Based Gesture Recognition

An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) pp. 617 - 620
Main Authors Wu, Yifan, Wu, Li, Xiao, Zelong, Hu, Taiyang
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire (LIF) model is employed as a neuron in the network nodes. This design enables efficient accumulation and transmission of spike signals, resulting in a significant reduction in network power consumption. Furthermore, the unsupervised learning algorithm of STDP is employed to facilitate feature extraction in the established CSNN, ensuring low computational complexity. The experimental results demonstrate that the proposed STDP-CSNN architecture achieves an impressive recognition accuracy of 92.72%, while concurrently addressing the crucial requirements of low power consumption and computational simplicity.
AbstractList An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based gesture recognition in this paper. Radar range-Doppler image data are encoded into spike sequences with CSNN, and the leaky integrate-and-fire (LIF) model is employed as a neuron in the network nodes. This design enables efficient accumulation and transmission of spike signals, resulting in a significant reduction in network power consumption. Furthermore, the unsupervised learning algorithm of STDP is employed to facilitate feature extraction in the established CSNN, ensuring low computational complexity. The experimental results demonstrate that the proposed STDP-CSNN architecture achieves an impressive recognition accuracy of 92.72%, while concurrently addressing the crucial requirements of low power consumption and computational simplicity.
Author Hu, Taiyang
Wu, Li
Xiao, Zelong
Wu, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
  email: wuyifan@njust.edu.cn
  organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China
– sequence: 2
  givenname: Li
  surname: Wu
  fullname: Wu, Li
  email: li_wu@njust.edu.cn
  organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China
– sequence: 3
  givenname: Zelong
  surname: Xiao
  fullname: Xiao, Zelong
  email: zelongxiao@njust.edu.cn
  organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China
– sequence: 4
  givenname: Taiyang
  surname: Hu
  fullname: Hu, Taiyang
  email: Sun1983hu@126.com
  organization: Nanjing University of Science and Technology,School of Electronic and Optical Engineering,Nanjing,China
BookMark eNo1kM9OAjEYxGuiB__wBh7qAyz225bd7VFXRBJEg3gm3fYraVha0i0Y3t4l4mkyk_nNYW7IpQ8eCXkANgRg8nFaT-v3WcGggGHOcj4EJnJR8eqCDGQpKz5inIOA8pocvnZu4_w6W7rtSV5wh96gT_SzVV1y2qUjrYM_hHafXPCqpWeCznEfezvH9BPihtoQ6djanjjRC2VUzJ5Vh4ZOsEv7iHSBOqy9O83ckSur2g4HZ70l36_jZf2WzT4m0_ppljkAmTKwXGipK8G0LbhmXBs1EthIxNJAY03TNErwwjJWFlr2GWhRQl9sRoarnN-S-79dh4irXXRbFY-r_zv4L-S6XdY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICML60161.2023.10424838
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350331417
EndPage 620
ExternalDocumentID 10424838
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1f34c9c840cf63c03cda54eb9ee7d1bfdbbba436f0076c97d11c471c03b5d3a23
IEDL.DBID RIE
IngestDate Wed May 01 11:50:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1f34c9c840cf63c03cda54eb9ee7d1bfdbbba436f0076c97d11c471c03b5d3a23
PageCount 4
ParticipantIDs ieee_primary_10424838
PublicationCentury 2000
PublicationDate 2023-Nov.-3
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)
PublicationTitleAbbrev ICICML
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.859742
Snippet An innovative architecture, termed Spike-Timing-Dependent Plasticity Convolutional Spiking Neural Network (STDP-CSNN), is proposed for efficient radar-based...
SourceID ieee
SourceType Publisher
StartPage 617
SubjectTerms component
Computational complexity
Computer architecture
Convolution
Gesture recognition
Power demand
SNN
STDP
Training
Unsupervised learning
Title Spiking-Timing-Dependent Plasticity Convolutional Spiking Neural Network for Efficient Radar-Based Gesture Recognition
URI https://ieeexplore.ieee.org/document/10424838
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPvRPA1tWmSXl6dm5u4MeYGexu5VYbSjdIO9NebpK2iIPjWlqQNOSnfOck53wfATSpNaBJQhmicSERD5SMuWIQoEYxJRX3u5HxG43Awp48LtqiL1V0tjNbaJZ9pz166s3y1lqXdKjN_OA1oTOIWaJnIrSrW2gXXNW_m7bA77I6eLL-IDfwC4jXtfyinOODo74Nx88kqX-TVKwvhyY9fbIz_HtMB6HzX6MHJF_ocgh2dHYHt82Zl977RzIp1vaD7WuK2gBPjJdsE6uIdmhds6wXH32DdA1qWDnM7rtLCofFlYc_RS9jeU654ju4M4in4YHCkzDWcNqlH66wD5v3erDtAtbICWmGcFAinhMpEmuBOpiGRPpGKM6pFonWksEiVEIJTEqb2oM5YU2EsDYqZhoIpwgNyDNrZOtMnABoXTiaWx575nGpCRRSmNMVYURXpJA5OQcdO2nJTkWcsm_k6--P5OdiztnPlfuQCtIu81JcG9wtx5ez9CWfusHc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL6mNk3Sy6tzc9OtjLnB3kZulaF0Y7QD_fUmvSgKgm9t6WlDTst3TvKd7wBwk0iTmniUIRpGElFfuYgLFiBKBGNSUZcX7XwGsd-d0Mcpm1bF6kUtjNa6IJ9pxx4We_lqIXO7VGb-cOrRkISbYMsAP8NludY2uK6UM297rV5r0LcKIzb184hTW_zonVJAR2cPxPVLS8bIq5NnwpEfv_QY_z2qfdD8rtKDwy_8OQAbOj0E6-fl3K5-o7Ft1_WC7qsmtxkcmjjZUqizd2gesK4-Of4GKwtodTrMaVwSw6GJZmG7EJiw1iOu-ArdGcxT8MEgSb7ScFSTjxZpE0w67XGri6reCmiOcZQhnBAqI2nSO5n4RLpEKs6oFpHWgcIiUUIITomf2K0640-FsTQ4Zm4UTBHukSPQSBepPgbQBHEyskr2zOVUEyoCP6EJxoqqQEehdwKadtJmy1I-Y1bP1-kf16_ATnc86M_6vfjpDOxaPxbFf-QcNLJVri9MFJCJy8L3n8cxs8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Image+Processing%2C+Computer+Vision+and+Machine+Learning+%28ICICML%29&rft.atitle=Spiking-Timing-Dependent+Plasticity+Convolutional+Spiking+Neural+Network+for+Efficient+Radar-Based+Gesture+Recognition&rft.au=Wu%2C+Yifan&rft.au=Wu%2C+Li&rft.au=Xiao%2C+Zelong&rft.au=Hu%2C+Taiyang&rft.date=2023-11-03&rft.pub=IEEE&rft.spage=617&rft.epage=620&rft_id=info:doi/10.1109%2FICICML60161.2023.10424838&rft.externalDocID=10424838