Predicting Dominance of Toxic-Producing Cyanobacteria Genus by Machine Learning in a Eutrophic River in South Korea

Climate crisis is aggravating harmful algal blooms globally. Especially, cyanobacteria harmful algal blooms (CBs) produce taste and odorous compounds and cyanotoxins (microcystins), thereby threatens human health and ecosystem. Cyanotoxins are known to be produced by mainly Microcystis, Anabaena, Os...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Sustainable Technology and Engineering (i-COSTE) pp. 1 - 5
Main Authors Kim, Jayun, Jung, Woosik, Yeon, Seungjae, An, Jusuk, Oh, Hyunje, Park, Joonhong
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate crisis is aggravating harmful algal blooms globally. Especially, cyanobacteria harmful algal blooms (CBs) produce taste and odorous compounds and cyanotoxins (microcystins), thereby threatens human health and ecosystem. Cyanotoxins are known to be produced by mainly Microcystis, Anabaena, Oscillatoria, and Aphanizomenon, In the Republic of Korea, extreme CBs occur at the Nakdong River every summer. This study examined spatial distribution of cyanobacterial composition, characterizes major environmental factors influencing microcystins by using machine learning models in the Nakdong River. It was shown that only Microcystis was significant for microcystin and higher ratio of nitrogen to phosphorous contributes to lower microcystin.
AbstractList Climate crisis is aggravating harmful algal blooms globally. Especially, cyanobacteria harmful algal blooms (CBs) produce taste and odorous compounds and cyanotoxins (microcystins), thereby threatens human health and ecosystem. Cyanotoxins are known to be produced by mainly Microcystis, Anabaena, Oscillatoria, and Aphanizomenon, In the Republic of Korea, extreme CBs occur at the Nakdong River every summer. This study examined spatial distribution of cyanobacterial composition, characterizes major environmental factors influencing microcystins by using machine learning models in the Nakdong River. It was shown that only Microcystis was significant for microcystin and higher ratio of nitrogen to phosphorous contributes to lower microcystin.
Author Yeon, Seungjae
Jung, Woosik
Kim, Jayun
An, Jusuk
Park, Joonhong
Oh, Hyunje
Author_xml – sequence: 1
  givenname: Jayun
  surname: Kim
  fullname: Kim, Jayun
  email: naturekim@yonsei.ac.kr
  organization: Yonsei University,Civil and Environmental Engineering,Seoul,South Korea
– sequence: 2
  givenname: Woosik
  surname: Jung
  fullname: Jung, Woosik
  email: woosikjung1929@gmail.com
  organization: Yonsei University,Civil and Environmental Engineering,Seoul,South Korea
– sequence: 3
  givenname: Seungjae
  surname: Yeon
  fullname: Yeon, Seungjae
  email: yeon@kict.re.kr
  organization: Korea Institute of Civil Engineering and Building Technology,Environmental Research Department,Goyang,South Korea
– sequence: 4
  givenname: Jusuk
  surname: An
  fullname: An, Jusuk
  email: jusuk@kict.re.kr
  organization: Korea Institute of Civil Engineering and Building Technology,Environmental Research Department,Goyang,South Korea
– sequence: 5
  givenname: Hyunje
  surname: Oh
  fullname: Oh, Hyunje
  email: hjoh@kict.re.kr
  organization: Korea Institute of Civil Engineering and Building Technology,Environmental Research Department,Goyang,South Korea
– sequence: 6
  givenname: Joonhong
  surname: Park
  fullname: Park, Joonhong
  email: parkj@yonsei.ac.kr
  organization: Yonsei University,Civil and Environmental Engineering,Seoul,South Korea
BookMark eNo1kE9PAjEUxGuiB0W-gYfG-2L7yv7p0awIRgxE8Exeu2_lJdKSsmvk2ytRT5OZ32QOcyXOQwwkxK1WI62VveOsXqzWk0KNCxiBAjPSKleqLNWZGNrSViZXBmyp9aU4LBM17DsO7_Ih7jhg8CRjK9fxi322TLHp_QnWRwzRoe8oMcophf4g3VG-oN9yIDknTOHU4yBRTvouxf2WvXzlT0qncBX7biufYyK8Fhctfhxo-KcD8fY4WdezbL6YPtX384y1tl2mnbINQqUK0zqLFaofD8UYHDgNWoEzpaPCQ65zW1loWgBAQ6Ya2zyvyAzEze8uE9Fmn3iH6bj5_8J8A7mjWfQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/i-COSTE60462.2023.10500770
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Explore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350329711
EndPage 5
ExternalDocumentID 10500770
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1b09da28063fb9a8a009d2642b2b12102b37be6c25159892df222a3e3849558e3
IEDL.DBID RIE
IngestDate Tue Jun 25 17:23:44 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1b09da28063fb9a8a009d2642b2b12102b37be6c25159892df222a3e3849558e3
PageCount 5
ParticipantIDs ieee_primary_10500770
PublicationCentury 2000
PublicationDate 2023-Dec.-4
PublicationDateYYYYMMDD 2023-12-04
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2023 International Conference on Sustainable Technology and Engineering (i-COSTE)
PublicationTitleAbbrev I-COSTE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9016646
Snippet Climate crisis is aggravating harmful algal blooms globally. Especially, cyanobacteria harmful algal blooms (CBs) produce taste and odorous compounds and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms algae
Biological system modeling
Compounds
cyanobacteria
Ecosystems
eutrophic river
Graphical models
Machine learning
Nitrogen
nutrients
Rivers
water quality
Title Predicting Dominance of Toxic-Producing Cyanobacteria Genus by Machine Learning in a Eutrophic River in South Korea
URI https://ieeexplore.ieee.org/document/10500770
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20J08qVvxmD14Tm2y-9hxbi9JatIXeyu52okFISpuA9dc7s00VBcFb2CSbZYdlZjLvvWHsWsc6MpmP2UkMwgmMFo7yqNeL38mUjjAfk8R3Hgyj_iS4n4bThqxuuTAAYMFn4NKlreXPS1PTrzI84SHJz2CGvhtLuSFrNUKiXkfe5E76-DzuRsS3dKktuLt94UfrFOs5evtsuP3mBjDy5taVds3HLznGfy_qgLW_SXp89OV-DtkOFEdsNVpS5YWwzPy2tDAXfKzM-Lh8z40zsvqudDNdqwKPspVqVvwOinrF9ZoPLLYSeCO7-sLzgiveratluXjNDX8iGAcN2tZ7_AEXq9ps0uuO077T9FVwcs-TleNpNICikqrItFSJwjhrjoGRr31t9cS0iDVExqdYJ5H-PMMgQgkQCWZTYQLimLWKsoATxnEOnCgEE4QQxFlHChObRCthdBIaT5yyNu3YbLGRzphtN-vsj_FztkeGs3iR4IK1qmUNl-j1K31lrf0Jt7-thQ
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_RJxYnf5sHX1rXp5_PcnO7DoRvsbSTZrRahHVsLzl_vvVmnKAi-lbRNQ0LIub3nnMvYtQpVoBMXo5MQhOVpJSzpUK0Xt5FIFWA8FpPeuT8IOmPvYeJPKrG60cIAgCGfgU2XJpc_y3VJv8pwh_tkP4MR-jYC6yhcy7UqK1GnEd-kVvPxedQKSHFpU2Fwe_PKj-Ip5uxo77HB5qtrysibXRbK1h-_DBn_Pax9Vv-W6fHh1wF0wLYgO2TL4YJyL8Rm5re5IbrgY3nCR_l7qq2hcXilm82VzHAzG7Nmye8gK5dcrXjfsCuBV8arLzzNuOStsljk89dU8yciclCjKb7HuzhYWWfjdmvU7FhVZQUrdZy4sByFSyApqSoSFctIItKaITRylauMo5gSoYJAu4R2otidJQgjpAARYTzlRyCOWC3LMzhmHPvAjnzQng9emDRioUMdKSm0inztiBNWpxmbztfmGdPNZJ3-0X7Fdjqjfm_aux90z9guLaJhj3jnrFYsSrhADFCoS7Pyn_m8sNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Sustainable+Technology+and+Engineering+%28i-COSTE%29&rft.atitle=Predicting+Dominance+of+Toxic-Producing+Cyanobacteria+Genus+by+Machine+Learning+in+a+Eutrophic+River+in+South+Korea&rft.au=Kim%2C+Jayun&rft.au=Jung%2C+Woosik&rft.au=Yeon%2C+Seungjae&rft.au=An%2C+Jusuk&rft.date=2023-12-04&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2Fi-COSTE60462.2023.10500770&rft.externalDocID=10500770