AI Based Electric Automobile Battery Drain Forecasting System

While electric vehicles (EVs) are gaining appeal as a sustainable mode of transportation, issues like range anxiety and battery depletion prevent them from being widely adopted. To better plan for charging stops, we created a model that takes into account the time of day, the length of the trip, and...

Full description

Saved in:
Bibliographic Details
Published in2023 4th International Conference on Smart Electronics and Communication (ICOSEC) pp. 756 - 761
Main Authors J, Santhosh B, Benvin, Shalet, R, Arvind, V, Aswini, Maranan, Ramya, Thrinath, B.V. Sai
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2023
Subjects
Online AccessGet full text
DOI10.1109/ICOSEC58147.2023.10276243

Cover

Loading…
Abstract While electric vehicles (EVs) are gaining appeal as a sustainable mode of transportation, issues like range anxiety and battery depletion prevent them from being widely adopted. To better plan for charging stops, we created a model that takes into account the time of day, the length of the trip, and the temperature outside. We constructed an accurate battery drain prediction model using machine learning methods, specifically the Support Vector Machine (SVM) algorithm. With strong correlation and low error rates, our findings show that the SVM algorithm is ideal for this job. Our findings might be useful to EV owners and fleet managers as a resource for reducing wasteful driving and maximizing range. Future work might examine the effect of battery deterioration on electric vehicle performance, leading to more nuanced models for maximizing EV efficiency and reducing transportation emissions.
AbstractList While electric vehicles (EVs) are gaining appeal as a sustainable mode of transportation, issues like range anxiety and battery depletion prevent them from being widely adopted. To better plan for charging stops, we created a model that takes into account the time of day, the length of the trip, and the temperature outside. We constructed an accurate battery drain prediction model using machine learning methods, specifically the Support Vector Machine (SVM) algorithm. With strong correlation and low error rates, our findings show that the SVM algorithm is ideal for this job. Our findings might be useful to EV owners and fleet managers as a resource for reducing wasteful driving and maximizing range. Future work might examine the effect of battery deterioration on electric vehicle performance, leading to more nuanced models for maximizing EV efficiency and reducing transportation emissions.
Author Maranan, Ramya
Benvin, Shalet
J, Santhosh B
Thrinath, B.V. Sai
V, Aswini
R, Arvind
Author_xml – sequence: 1
  givenname: Santhosh B
  surname: J
  fullname: J, Santhosh B
  email: Santhoshbj221@gmail.com
  organization: BGS Institute of Technology,Department of Computer Science and Engineering,Mandya,Karnataka,India,571448
– sequence: 2
  givenname: Shalet
  surname: Benvin
  fullname: Benvin, Shalet
  email: shaletbenvin@bgsit.ac.in
  organization: BGS Institute of Technology,Department of Computer Science and Engineering,Mandya,Karnataka,India,571448
– sequence: 3
  givenname: Arvind
  surname: R
  fullname: R, Arvind
  email: arvind.r@cmrit.ac.in
  organization: CMR Institute of Technology,Department of Information Science and Engineering,Bangalore,Karnataka,India,560037
– sequence: 4
  givenname: Aswini
  surname: V
  fullname: V, Aswini
  email: aswini.cse@sairamit.edu.in
  organization: Sri Sai Ram Institute of Technology,Department of Computer Science and Engineering,Chennai,Tamil Nadu,India,600044
– sequence: 5
  givenname: Ramya
  surname: Maranan
  fullname: Maranan, Ramya
  email: ramyamaranan@yahoo.com
  organization: Saveetha School of Engineering,Department of Research and Innovation,Chennai,Tamil Nadu,India,602105
– sequence: 6
  givenname: B.V. Sai
  surname: Thrinath
  fullname: Thrinath, B.V. Sai
  email: connectbvst@gmail.com
  organization: School of Engineering, Mohan Babu University,Department of Electrical and Electronics Engineering,Tirupati,Andhra Pradesh,India,517102
BookMark eNo1j71OwzAURo0EA5S-AYN5gATb10nsgSGEFCJV6lCYK9u5Rpbygxwz5O2pBJ2-4UhH57sj19M8ISGPnOWcM_3UNYdj2xSKyyoXTEDOmahKIeGKbHWlFRQMGFNK3ZLnuqMvZsGetgO6FIOj9U-ax9mGAc8kJYwrfY0mTHQ3R3RmSWH6osd1STjekxtvhgW3_7shn7v2o3nP9oe3rqn3WeBcp4xrkB4VokRrWems8FL2WmoN1kjjSgVV1QMXCtw52ipnC--BO1Yg96aEDXn48wZEPH3HMJq4ni6v4BebIUcy
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOSEC58147.2023.10276243
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350300888
EndPage 761
ExternalDocumentID 10276243
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1934fe8ee4ebb06cb2f44d94993ba4ac68377d31283c814b8cb5ff31c05e1fa63
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:05 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1934fe8ee4ebb06cb2f44d94993ba4ac68377d31283c814b8cb5ff31c05e1fa63
PageCount 6
ParticipantIDs ieee_primary_10276243
PublicationCentury 2000
PublicationDate 2023-Sept.-20
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2023 4th International Conference on Smart Electronics and Communication (ICOSEC)
PublicationTitleAbbrev ICOSEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8978666
Snippet While electric vehicles (EVs) are gaining appeal as a sustainable mode of transportation, issues like range anxiety and battery depletion prevent them from...
SourceID ieee
SourceType Publisher
StartPage 756
SubjectTerms artificial intelligence
battery drain
Electric vehicles
Error analysis
Machine learning
Machine learning algorithms
prediction
Predictive models
Support Vector Machine (SVM)
Support vector machines
Transportation
Title AI Based Electric Automobile Battery Drain Forecasting System
URI https://ieeexplore.ieee.org/document/10276243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5uB_Gk4sRvInhtTZs0bQ4e5tzYPExBB7uNfLyBIa6i7UF_vUnaKQqCtxICSfry8uTjeZ8HoQtl0hwSTiIBgkQsZxCJNNGRNorLIgWTqcC2mPLxjN3Os3lbrB5qYQAgkM8g9p_hLd-UuvZXZS7DU5e7jHZQx53cmmKtTXTe6mZeTgZ3D8NBViQsj70reLzu_8M5JQDHaBtN10M2fJGnuK5UrD9-qTH-e047qPddo4fvv9BnF23Aag9d9Sf42uGSwcNgb7PUuF9X5XOpXPLjRkvzHd94WwjsTTm1fPO0Z9zolvfQbDR8HIyj1iAhWiaJqCK3-WIWCgAGShGuVWoZM15uhirJpObu9Jkb6iCIavdXVKFVZi1NNMkgsZLTfdRdlSs4QNgWTNFcuNgQzSQlIrfU-i5MWiY0P0Q9v_bFS6OBsVgv--iP9mO05UPgmRUpOUHd6rWGUwfflToLYfsEWrKbFg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oBPWk4sRvI3hNbZo0bQ8e5tzYdE7BDbyNJn2BIa6i7UH_epN2UxQEbyW0tMnj8Uvb3wfAmcqCCJn0aYKJT0UkkCYB01RnSqZxgFmoKrbFUPbG4voxfJyL1SstDCJW5DP03GH1Lz_Ldek-ldkOD2zvCr4MK6FT49ZyrVU4nTtnnvfbdw-ddhgzEXkuF9xbXPEjO6WCju4GDBc3rRkjT15ZKE9__PJj_PdTbULzW6VH7r_wZwuWcLYNF60-ubTIlJFOFXAz1aRVFvlzrmz7k9pN851cuWAI4mI5dfrmiM-kdi5vwrjbGbV7dB6RQKeMJQW12y9hMEYUqJQvtQqMEJkznOEqFamW9v0zyrgFIa7tqqhYq9AYzrQfIjOp5DvQmOUz3AViYqF4lNjq-Fqk3E8iw407RaRGJFruQdPNffJSu2BMFtPe_2P8BNZ6o9vBZNAf3hzAuiuH41kE_iE0itcSjyyYF-q4KuEnoyueXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=AI+Based+Electric+Automobile+Battery+Drain+Forecasting+System&rft.au=J%2C+Santhosh+B&rft.au=Benvin%2C+Shalet&rft.au=R%2C+Arvind&rft.au=V%2C+Aswini&rft.date=2023-09-20&rft.pub=IEEE&rft.spage=756&rft.epage=761&rft_id=info:doi/10.1109%2FICOSEC58147.2023.10276243&rft.externalDocID=10276243