Optimal Site Selection Planning of EV Charging Pile Based on Genetic Algorithm

With the aggravation of environmental pollution problems, electric vehicles have attracted the attention of the governments of all countries for their advantages of zero pollution and zero emissions. Reasonable charging facilities are of great significance to the development of electric vehicle indu...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC) pp. 1799 - 1803
Main Authors He, Jiemeng, Zhang, Lin, Hu, Rongfang, Xie, Yuande
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text
DOI10.1109/ITOEC49072.2020.9141690

Cover

Loading…
Abstract With the aggravation of environmental pollution problems, electric vehicles have attracted the attention of the governments of all countries for their advantages of zero pollution and zero emissions. Reasonable charging facilities are of great significance to the development of electric vehicle industry. By predicting the current EV ownership, predicting EV charging demand and analyzing various influencing factors of charging pile construction, an optimal site selection model for multi-objective planning of EV charging pile is established to improve charging efficiency of EV. The genetic algorithm is used to solve the model, and through example analysis, the time cost of planning candidate points from charging demand points of electric vehicles to candidate points of charging piles are obtained, and the optimal site selection result of charging piles is given. This model can provide a reference for the rational planning of charging piles in the future.
AbstractList With the aggravation of environmental pollution problems, electric vehicles have attracted the attention of the governments of all countries for their advantages of zero pollution and zero emissions. Reasonable charging facilities are of great significance to the development of electric vehicle industry. By predicting the current EV ownership, predicting EV charging demand and analyzing various influencing factors of charging pile construction, an optimal site selection model for multi-objective planning of EV charging pile is established to improve charging efficiency of EV. The genetic algorithm is used to solve the model, and through example analysis, the time cost of planning candidate points from charging demand points of electric vehicles to candidate points of charging piles are obtained, and the optimal site selection result of charging piles is given. This model can provide a reference for the rational planning of charging piles in the future.
Author Zhang, Lin
He, Jiemeng
Hu, Rongfang
Xie, Yuande
Author_xml – sequence: 1
  givenname: Jiemeng
  surname: He
  fullname: He, Jiemeng
  organization: School of Mathematics and Information Science, Nanchang Hangkong University,Nanchang,China
– sequence: 2
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: School of Mathematics and Information Science, Nanchang Hangkong University,Nanchang,China
– sequence: 3
  givenname: Rongfang
  surname: Hu
  fullname: Hu, Rongfang
  organization: School of Mathematics and Information Science, Nanchang Hangkong University,Nanchang,China
– sequence: 4
  givenname: Yuande
  surname: Xie
  fullname: Xie, Yuande
  organization: School of Mathematics and Information Science, Nanchang Hangkong University,Nanchang,China
BookMark eNotj8tqwzAURFVoF22aL-ii-gG7urL80DI1bhoIdSCPbZClK0egyMHRpn9fl4RZDAOHgfNCHsMQkJB3YCkAkx-rXdvUQrKSp5xxlkoQUEj2QOayrKDkFYiMZ_BMftpLdGfl6dZFpFv0qKMbAt14FYILPR0sbQ60Pqmx_58b55F-qisaOlFLDBidpgvfD6OLp_MrebLKX3F-7xnZfzW7-jtZt8tVvVgnDqCKiUUJRnMtjIISuVSs6JToKmB5mSMYYXmOaI3sClGAVQBcF6YzYoqRgmcz8nb7dYh4vIyTwvh7vFtmf2soTLI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITOEC49072.2020.9141690
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728143231
1728143233
EndPage 1803
ExternalDocumentID 9141690
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-fe91dc2c4da17e29a06ba4b810575e1d4f25eefd9b6461fa112c6dbd4d4dd9423
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-fe91dc2c4da17e29a06ba4b810575e1d4f25eefd9b6461fa112c6dbd4d4dd9423
PageCount 5
ParticipantIDs ieee_primary_9141690
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC)
PublicationTitleAbbrev ITOEC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7403286
Snippet With the aggravation of environmental pollution problems, electric vehicles have attracted the attention of the governments of all countries for their...
SourceID ieee
SourceType Publisher
StartPage 1799
SubjectTerms Analytical models
Automobiles
charging pile
Electric vehicle charging
genetic algorithm
Linear programming
multiobjective planning
optimal location
Planning
Predictive models
Title Optimal Site Selection Planning of EV Charging Pile Based on Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9141690
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjza0i272-5RCQRNeCSA4Ua63Vkl8jCkXPz1zrYFo_FgemmaTdrMPr6ZznzzEXJnlDBRIkNPYXThcWhFXpLKlgc2FdIq1oqU4w73B7I35c8zMauQ-wMXBgDy4jPw3W2eyzebdOd-lTUV4y6rUyVVDNwKrlZZssUC1XyaDDttjsGe41eFgV-O_iGbkqNG95j09-8rikXe_V2m_fTzVyvG_37QCWl88_Po6IA8p6QC6zoZDHH3r5IlHaMXSce5vg0ane5liejG0s4Ldfl1J0xER3ge0EcEMUNxlGs_jWuIPixfN9tF9rZqkGm3M2n3vFItwVtgkJB5FhQzaZhyk7AIQpUEUidcx07IVwAz3IYCwBqlJZfMJuhopdJow_EyCr2qM1Jbb9ZwTijXGiAWYWQijQieaKEVl4E1AmLgLL4gdWeL-UfREGNemuHy78dX5MjNR1FfdU1q2XYHN4jkmb7Np_ALXLWfxA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSkBoxv9-DRlm7Z3XaPSiCgvBLAcCO73akSgRpSLv56d9uC0XgwvTTNJm1mH99MZ775ELrTgulAct8RJrpwKNQDR0a87kAcMR4LUg-E5Q73-rw9oU9TNi2h-x0XBgCy4jNw7W2Wy9dJtLG_ymqCUJvV2UP7BvepyNlaRdEW8UStMx40G9SEe5Zh5XtuMf6HcEqGG60j1Nu-MS8XeXc3qXKjz1_NGP_7Sceo-s3Qw8Md9pygEqwqqD8w-38pF3hk_Eg8yhRujNnxVpgIJzFuvmCbYbfSRHhoTgT8aGBMYzPKNqA2qwg_LF6T9Tx9W1bRpNUcN9pOoZfgzE2YkDoxCKIjP6JakgB8IT2uJFWhlfJlQDSNfQYQa6E45SSWxtWKuFaamksL41edovIqWcEZwlQpgJD5gQ6UwXCpmBKUe7FmEAIl4TmqWFvMPvKWGLPCDBd_P75FB-1xrzvrdvrPl-jQzk1ebXWFyul6A9cG11N1k03nF-_LoxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+5th+Information+Technology+and+Mechatronics+Engineering+Conference+%28ITOEC%29&rft.atitle=Optimal+Site+Selection+Planning+of+EV+Charging+Pile+Based+on+Genetic+Algorithm&rft.au=He%2C+Jiemeng&rft.au=Zhang%2C+Lin&rft.au=Hu%2C+Rongfang&rft.au=Xie%2C+Yuande&rft.date=2020-06-01&rft.pub=IEEE&rft.spage=1799&rft.epage=1803&rft_id=info:doi/10.1109%2FITOEC49072.2020.9141690&rft.externalDocID=9141690