Research on Lane Change Strategy considering Driver's Personalized Driving Behavior
In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model cons...
Saved in:
Published in | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 317 - 321 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model considering driver characteristics is constructed by combining the Gaussian Mixture Model (GMM) and the Hidden Markov Model (HMM). This method solves the difficulty of describing the static distribution characteristics and dynamic random process in driver behavior. Finally, the lateral acceleration experiment is designed to collect vehicle acceleration data, and the validity of the model structure is verified by using natural driving data. |
---|---|
AbstractList | In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model considering driver characteristics is constructed by combining the Gaussian Mixture Model (GMM) and the Hidden Markov Model (HMM). This method solves the difficulty of describing the static distribution characteristics and dynamic random process in driver behavior. Finally, the lateral acceleration experiment is designed to collect vehicle acceleration data, and the validity of the model structure is verified by using natural driving data. |
Author | Wang, Yi Fan, Jie Deng, Bo Ou, Yang Li, Zhe |
Author_xml | – sequence: 1 givenname: Yi surname: Wang fullname: Wang, Yi organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China – sequence: 2 givenname: Bo surname: Deng fullname: Deng, Bo organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China – sequence: 3 givenname: Yang surname: Ou fullname: Ou, Yang organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China – sequence: 4 givenname: Zhe surname: Li fullname: Li, Zhe organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China – sequence: 5 givenname: Jie surname: Fan fullname: Fan, Jie email: fanjie@caeri.com.cn organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China |
BookMark | eNotjMtKxDAUQCPoQsf5Al1k56o1aR5NlrWOOlBQHF0PN-ltGxhTScvA-PWOj9WBc-BckNM4RiTkmrOcc2Zvq_WqUqLQLC9YwXPGWClPyNKWhmut5LEoc042rzghJD_QMdIGItJ6gNgj3cwJZuwP1I9xCi2mEHt6n8Ie081EXzBNY4Rd-ML21_7UOxxgH8Z0Sc462E24_OeCvD-s3uqnrHl-XNdVkwXOzZx1FqBUHQpojdMCuGklk0ZYC0Wr0R-Fl9J54UqPrmCSd9YgOOVKlM4ysSBXf9-AiNvPFD4gHbZWFUoJLb4BAXxO4A |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIEA53260.2021.00074 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665432658 1665432659 |
EndPage | 321 |
ExternalDocumentID | 9525536 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-f9aa75fe3ad8b63a18d4048399a2d6eca18c44bc3b7ceb2041f98eab5b7e4b903 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:49 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-f9aa75fe3ad8b63a18d4048399a2d6eca18c44bc3b7ceb2041f98eab5b7e4b903 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9525536 |
PublicationCentury | 2000 |
PublicationDate | 2021-May |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) |
PublicationTitleAbbrev | AIEA |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.766391 |
Snippet | In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 317 |
SubjectTerms | Analytical models Data models driving bahavior hidden Markov model Hidden Markov models lane change Markov processes Predictive models Random processes real-world data analysis Statistical learning |
Title | Research on Lane Change Strategy considering Driver's Personalized Driving Behavior |
URI | https://ieeexplore.ieee.org/document/9525536 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OQheTNc0SZsch25McTLQwW4jSV9AhE5md3B_vUnbTRQP3soroSHv8L7XfN_3ELpSWW5cohmhUnLCwSoilaUEPLZ1MsmEgKAdnjyl4xl_mIt5C93stDAAUJHPIAqP1V1-vrTr8Kusr4QHwCxto7Zv3GqtVqOGo7HqD-6HA-HRSOy7voRGVXX8MTOlKhmjfTTZfqxmirxF69JEdvPLh_G_uzlAvW9xHp7uys4hakHRRc9bBh1eFvhRF4Br2QBu3Gc_sW0mc_o1-G4V2BjXH3i6heIbyKtoeNtYJq56aDYavtyOSTMvgbz6NqEkTmmdCQdM59KkTFOZ8-AYr5RO8hSsD1jOjWUms76hjjl1SoI2wmTAjYrZEeoUywKOEXY0oWniMmrAcQ5CeRRGmQGlBVhQ9AR1w4Es3mtLjEVzFqd_h8_QXkhJzRM8R51ytYYLX8tLc1kl8QsqyqHN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ6CF9stbdI2x6GOTbcxcIPdRpJ-ARE6md3B_fUmbTdRPHgrXwktyeG9r33vfQA3Ik6VCWTo0SRhHkMtvERo6qHltiYJYs7ReYeHo6g3ZU8zPqvB3dYLg4iF-Ax9d1n8y08XeuU-lbUEtwQ4jHZg1-I-p6Vbq_LD0bZodfqPHW75SNv2fQH1C3z8MTWlAI3uAQw3jyu1Im_-Kle-Xv9KYvzv-xxC89ueR8Zb4DmCGmYNeNlo6MgiIwOZISmNA6TKn_0kuprNadeQh6XTY9x-kPGGjK8xLarubhWauGzCtPs4ue951cQE79U2CrlnhJQxNxjKNFFRKGmSMpcZL4QM0gi1LWjGlA5VrG1L3WbUiASl4ipGpkQ7PIZ6tsjwBIihAY0CE1OFhjHkwvIwGioUkqNGQU-h4TZk_l6GYsyrvTj7u3wNe73JcDAf9EfP57DvjqdUDV5APV-u8NIie66uigP9AspZpRY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Research+on+Lane+Change+Strategy+considering+Driver%27s+Personalized+Driving+Behavior&rft.au=Wang%2C+Yi&rft.au=Deng%2C+Bo&rft.au=Ou%2C+Yang&rft.au=Li%2C+Zhe&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=317&rft.epage=321&rft_id=info:doi/10.1109%2FAIEA53260.2021.00074&rft.externalDocID=9525536 |