Research on Lane Change Strategy considering Driver's Personalized Driving Behavior

In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model cons...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 317 - 321
Main Authors Wang, Yi, Deng, Bo, Ou, Yang, Li, Zhe, Fan, Jie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model considering driver characteristics is constructed by combining the Gaussian Mixture Model (GMM) and the Hidden Markov Model (HMM). This method solves the difficulty of describing the static distribution characteristics and dynamic random process in driver behavior. Finally, the lateral acceleration experiment is designed to collect vehicle acceleration data, and the validity of the model structure is verified by using natural driving data.
AbstractList In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper proposes a personalized driver lane change prediction model based on modern statistical learning theory. In this paper, a lane changing model considering driver characteristics is constructed by combining the Gaussian Mixture Model (GMM) and the Hidden Markov Model (HMM). This method solves the difficulty of describing the static distribution characteristics and dynamic random process in driver behavior. Finally, the lateral acceleration experiment is designed to collect vehicle acceleration data, and the validity of the model structure is verified by using natural driving data.
Author Wang, Yi
Fan, Jie
Deng, Bo
Ou, Yang
Li, Zhe
Author_xml – sequence: 1
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China
– sequence: 2
  givenname: Bo
  surname: Deng
  fullname: Deng, Bo
  organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China
– sequence: 3
  givenname: Yang
  surname: Ou
  fullname: Ou, Yang
  organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China
– sequence: 4
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China
– sequence: 5
  givenname: Jie
  surname: Fan
  fullname: Fan, Jie
  email: fanjie@caeri.com.cn
  organization: New Energy Vehicle Center China Automotive Engineering Research Institute Co., Ltd,Chongqing,China
BookMark eNotjMtKxDAUQCPoQsf5Al1k56o1aR5NlrWOOlBQHF0PN-ltGxhTScvA-PWOj9WBc-BckNM4RiTkmrOcc2Zvq_WqUqLQLC9YwXPGWClPyNKWhmut5LEoc042rzghJD_QMdIGItJ6gNgj3cwJZuwP1I9xCi2mEHt6n8Ie081EXzBNY4Rd-ML21_7UOxxgH8Z0Sc462E24_OeCvD-s3uqnrHl-XNdVkwXOzZx1FqBUHQpojdMCuGklk0ZYC0Wr0R-Fl9J54UqPrmCSd9YgOOVKlM4ysSBXf9-AiNvPFD4gHbZWFUoJLb4BAXxO4A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIEA53260.2021.00074
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432658
1665432659
EndPage 321
ExternalDocumentID 9525536
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-f9aa75fe3ad8b63a18d4048399a2d6eca18c44bc3b7ceb2041f98eab5b7e4b903
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-f9aa75fe3ad8b63a18d4048399a2d6eca18c44bc3b7ceb2041f98eab5b7e4b903
PageCount 5
ParticipantIDs ieee_primary_9525536
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
PublicationTitleAbbrev AIEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.766391
Snippet In view of the problem that human-drivers in the side lanes are prone to enter the team during the driving process of internet vehicle fleets, this paper...
SourceID ieee
SourceType Publisher
StartPage 317
SubjectTerms Analytical models
Data models
driving bahavior
hidden Markov model
Hidden Markov models
lane change
Markov processes
Predictive models
Random processes
real-world data analysis
Statistical learning
Title Research on Lane Change Strategy considering Driver's Personalized Driving Behavior
URI https://ieeexplore.ieee.org/document/9525536
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OQheTNc0SZsch25McTLQwW4jSV9AhE5md3B_vUnbTRQP3soroSHv8L7XfN_3ELpSWW5cohmhUnLCwSoilaUEPLZ1MsmEgKAdnjyl4xl_mIt5C93stDAAUJHPIAqP1V1-vrTr8Kusr4QHwCxto7Zv3GqtVqOGo7HqD-6HA-HRSOy7voRGVXX8MTOlKhmjfTTZfqxmirxF69JEdvPLh_G_uzlAvW9xHp7uys4hakHRRc9bBh1eFvhRF4Br2QBu3Gc_sW0mc_o1-G4V2BjXH3i6heIbyKtoeNtYJq56aDYavtyOSTMvgbz6NqEkTmmdCQdM59KkTFOZ8-AYr5RO8hSsD1jOjWUms76hjjl1SoI2wmTAjYrZEeoUywKOEXY0oWniMmrAcQ5CeRRGmQGlBVhQ9AR1w4Es3mtLjEVzFqd_h8_QXkhJzRM8R51ytYYLX8tLc1kl8QsqyqHN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ6CF9stbdI2x6GOTbcxcIPdRpJ-ARE6md3B_fUmbTdRPHgrXwktyeG9r33vfQA3Ik6VCWTo0SRhHkMtvERo6qHltiYJYs7ReYeHo6g3ZU8zPqvB3dYLg4iF-Ax9d1n8y08XeuU-lbUEtwQ4jHZg1-I-p6Vbq_LD0bZodfqPHW75SNv2fQH1C3z8MTWlAI3uAQw3jyu1Im_-Kle-Xv9KYvzv-xxC89ueR8Zb4DmCGmYNeNlo6MgiIwOZISmNA6TKn_0kuprNadeQh6XTY9x-kPGGjK8xLarubhWauGzCtPs4ue951cQE79U2CrlnhJQxNxjKNFFRKGmSMpcZL4QM0gi1LWjGlA5VrG1L3WbUiASl4ipGpkQ7PIZ6tsjwBIihAY0CE1OFhjHkwvIwGioUkqNGQU-h4TZk_l6GYsyrvTj7u3wNe73JcDAf9EfP57DvjqdUDV5APV-u8NIie66uigP9AspZpRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Research+on+Lane+Change+Strategy+considering+Driver%27s+Personalized+Driving+Behavior&rft.au=Wang%2C+Yi&rft.au=Deng%2C+Bo&rft.au=Ou%2C+Yang&rft.au=Li%2C+Zhe&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=317&rft.epage=321&rft_id=info:doi/10.1109%2FAIEA53260.2021.00074&rft.externalDocID=9525536