Multiple Hypothesis Video Relation Detection

Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) pp. 287 - 291
Main Authors Di, Donglin, Shang, Xindi, Zhang, Weinan, Yang, Xun, Chua, Tat-Seng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
DOI10.1109/BigMM.2019.000-9

Cover

Loading…
Abstract Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem of short-term proposals. To alleviate the weakness of existing video relation detection methods, this work proposes a novel approach called Multi-Hypothesis Relational Association (MHRA), that can generate multiple hypotheses for video relation instances for more robust long-term relation prediction. Experiments on the benchmark dataset show that MHRA is able to outperform the state-of-the-art methods.
AbstractList Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem of short-term proposals. To alleviate the weakness of existing video relation detection methods, this work proposes a novel approach called Multi-Hypothesis Relational Association (MHRA), that can generate multiple hypotheses for video relation instances for more robust long-term relation prediction. Experiments on the benchmark dataset show that MHRA is able to outperform the state-of-the-art methods.
Author Chua, Tat-Seng
Di, Donglin
Zhang, Weinan
Shang, Xindi
Yang, Xun
Author_xml – sequence: 1
  givenname: Donglin
  surname: Di
  fullname: Di, Donglin
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Xindi
  surname: Shang
  fullname: Shang, Xindi
  organization: National University of Singapore
– sequence: 3
  givenname: Weinan
  surname: Zhang
  fullname: Zhang, Weinan
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Xun
  surname: Yang
  fullname: Yang, Xun
  organization: National University of Singapore
– sequence: 5
  givenname: Tat-Seng
  surname: Chua
  fullname: Chua, Tat-Seng
  organization: National University of Singapore
BookMark eNotzLtOwzAUgGEjwUALOxJLHoCEc3w9HqFcitQICQFrldrHYCkkUWOGvj1CMP3f9C_E8TAOLMQFQoMI_vo2f7RtIwF9AwC1PxILdJLQGOn0qbhqv_uSp56r9WEayyfPea7ec-SxeuG-K3kcqjsuHH51Jk5S1898_t-leHu4f12t683z49PqZlNnRCp1QqdCTByNdqh3cYeI2imC4FWwxnrQGm0AisEYLVPsyJFDS8kapQKppbj8-2Zm3k77_NXtD1vy6CUZ9QMG9D3b
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigMM.2019.000-9
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728155274
9781728155272
EndPage 291
ExternalDocumentID 8919285
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-f173cdfed54714bdb11147380c93c656904416c08dc5542fda8787168f6533c83
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:51 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-f173cdfed54714bdb11147380c93c656904416c08dc5542fda8787168f6533c83
PageCount 5
ParticipantIDs ieee_primary_8919285
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM)
PublicationTitleAbbrev BigMM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7935557
Snippet Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection...
SourceID ieee
SourceType Publisher
StartPage 287
SubjectTerms Feature extraction
Proposals
relational association
Robustness
Tagging
Task analysis
Trajectory
video relation detection
visual relationship
Visualization
Title Multiple Hypothesis Video Relation Detection
URI https://ieeexplore.ieee.org/document/8919285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgAtYi3MjDWqRs7ib3yqCqkIAaKulXxC0VIaUWTofx6zklbBGJgs7z4fJb8fef77gxwk2o6NkiDiXEsJtwxRyTlnDiW8BwZiYqaB_3sKZnO-OM8nndguK-FsdY24jMb-mGTyzdLXfunspGQyEdE3IUuBm5trdYu80jl6LZ4yzIv1vIdKCmRP_5LaeBicgjZbqFWJfIe1pUK9eevHoz_teQIBt-FecHzHnKOoWPLPgyzrSgwmG5WvqBqXayD18LYZbCTugX3tmo0V-UAZpOHl7sp2X6CQArk_hVx45Rp46yJEUa4MgovJ54yQbVkGsmY9-w40VQYjcwgciYXqQ-ChEuQyWnBTqBXLkt7CgFnaLIVNHISwzoMjagzQirD8zjCs4zOoO93uli1fS4W202e_z19AQfe163e6hJ61UdtrxCgK3XdnMwXcBqQug
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW8ycBYt27sJPbKowrQVAwt6lY1fqCoUlrRdIBfzzlpi0AMbJYX39mS77vz950BbiJFuxphMNGWBYRbZomknBPLQj5FRJL6ZUE_GYTxiD-Ng3ENWlstjDGmJJ-ZthuWb_l6rlauVNYREvGICHZgN3Bi3EqttXl7pLJzm70liaNruR6UlMgfP6aUAaN3AMlmqYonMmuvirStPn91YfyvLYfQ_JbmeS_boHMENZM3oJWsaYFe_LFwkqpltvReM23m3obs5t2bomRd5U0Y9R6GdzFZf4NAMkT_BbHdiCltjQ4wkPBUp3g98YgJqiRTCMfc3nZDRYVWiA18q6cicmmQsCFiOSXYMdTzeW5OwOMMTTaC-lZiYofJEbVayFTzaeDjafqn0HCeThZVp4vJ2smzv6evYS8eJv1J_3HwfA77bt8r9tUF1Iv3lbnEcF2kV-UpfQEvr5QC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Fifth+International+Conference+on+Multimedia+Big+Data+%28BigMM%29&rft.atitle=Multiple+Hypothesis+Video+Relation+Detection&rft.au=Di%2C+Donglin&rft.au=Shang%2C+Xindi&rft.au=Zhang%2C+Weinan&rft.au=Yang%2C+Xun&rft.date=2019-09-01&rft.pub=IEEE&rft.spage=287&rft.epage=291&rft_id=info:doi/10.1109%2FBigMM.2019.000-9&rft.externalDocID=8919285