Multiple Hypothesis Video Relation Detection
Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem...
Saved in:
Published in | 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) pp. 287 - 291 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/BigMM.2019.000-9 |
Cover
Loading…
Abstract | Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem of short-term proposals. To alleviate the weakness of existing video relation detection methods, this work proposes a novel approach called Multi-Hypothesis Relational Association (MHRA), that can generate multiple hypotheses for video relation instances for more robust long-term relation prediction. Experiments on the benchmark dataset show that MHRA is able to outperform the state-of-the-art methods. |
---|---|
AbstractList | Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection are limited to associating short-term relations into long-term relations throughout the video, because of the inaccurate and missing problem of short-term proposals. To alleviate the weakness of existing video relation detection methods, this work proposes a novel approach called Multi-Hypothesis Relational Association (MHRA), that can generate multiple hypotheses for video relation instances for more robust long-term relation prediction. Experiments on the benchmark dataset show that MHRA is able to outperform the state-of-the-art methods. |
Author | Chua, Tat-Seng Di, Donglin Zhang, Weinan Shang, Xindi Yang, Xun |
Author_xml | – sequence: 1 givenname: Donglin surname: Di fullname: Di, Donglin organization: Harbin Institute of Technology – sequence: 2 givenname: Xindi surname: Shang fullname: Shang, Xindi organization: National University of Singapore – sequence: 3 givenname: Weinan surname: Zhang fullname: Zhang, Weinan organization: Harbin Institute of Technology – sequence: 4 givenname: Xun surname: Yang fullname: Yang, Xun organization: National University of Singapore – sequence: 5 givenname: Tat-Seng surname: Chua fullname: Chua, Tat-Seng organization: National University of Singapore |
BookMark | eNotzLtOwzAUgGEjwUALOxJLHoCEc3w9HqFcitQICQFrldrHYCkkUWOGvj1CMP3f9C_E8TAOLMQFQoMI_vo2f7RtIwF9AwC1PxILdJLQGOn0qbhqv_uSp56r9WEayyfPea7ec-SxeuG-K3kcqjsuHH51Jk5S1898_t-leHu4f12t683z49PqZlNnRCp1QqdCTByNdqh3cYeI2imC4FWwxnrQGm0AisEYLVPsyJFDS8kapQKppbj8-2Zm3k77_NXtD1vy6CUZ9QMG9D3b |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BigMM.2019.000-9 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728155274 9781728155272 |
EndPage | 291 |
ExternalDocumentID | 8919285 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-f173cdfed54714bdb11147380c93c656904416c08dc5542fda8787168f6533c83 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:51 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-f173cdfed54714bdb11147380c93c656904416c08dc5542fda8787168f6533c83 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8919285 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sept. |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) |
PublicationTitleAbbrev | BigMM |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7935557 |
Snippet | Video relation in the form of triplet〈subject, predicate, object〉plays a vital role in video content understanding. Existing works on video relation detection... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 287 |
SubjectTerms | Feature extraction Proposals relational association Robustness Tagging Task analysis Trajectory video relation detection visual relationship Visualization |
Title | Multiple Hypothesis Video Relation Detection |
URI | https://ieeexplore.ieee.org/document/8919285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgAtYi3MjDWqRs7ib3yqCqkIAaKulXxC0VIaUWTofx6zklbBGJgs7z4fJb8fef77gxwk2o6NkiDiXEsJtwxRyTlnDiW8BwZiYqaB_3sKZnO-OM8nndguK-FsdY24jMb-mGTyzdLXfunspGQyEdE3IUuBm5trdYu80jl6LZ4yzIv1vIdKCmRP_5LaeBicgjZbqFWJfIe1pUK9eevHoz_teQIBt-FecHzHnKOoWPLPgyzrSgwmG5WvqBqXayD18LYZbCTugX3tmo0V-UAZpOHl7sp2X6CQArk_hVx45Rp46yJEUa4MgovJ54yQbVkGsmY9-w40VQYjcwgciYXqQ-ChEuQyWnBTqBXLkt7CgFnaLIVNHISwzoMjagzQirD8zjCs4zOoO93uli1fS4W202e_z19AQfe163e6hJ61UdtrxCgK3XdnMwXcBqQug |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW8ycBYt27sJPbKowrQVAwt6lY1fqCoUlrRdIBfzzlpi0AMbJYX39mS77vz950BbiJFuxphMNGWBYRbZomknBPLQj5FRJL6ZUE_GYTxiD-Ng3ENWlstjDGmJJ-ZthuWb_l6rlauVNYREvGICHZgN3Bi3EqttXl7pLJzm70liaNruR6UlMgfP6aUAaN3AMlmqYonMmuvirStPn91YfyvLYfQ_JbmeS_boHMENZM3oJWsaYFe_LFwkqpltvReM23m3obs5t2bomRd5U0Y9R6GdzFZf4NAMkT_BbHdiCltjQ4wkPBUp3g98YgJqiRTCMfc3nZDRYVWiA18q6cicmmQsCFiOSXYMdTzeW5OwOMMTTaC-lZiYofJEbVayFTzaeDjafqn0HCeThZVp4vJ2smzv6evYS8eJv1J_3HwfA77bt8r9tUF1Iv3lbnEcF2kV-UpfQEvr5QC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Fifth+International+Conference+on+Multimedia+Big+Data+%28BigMM%29&rft.atitle=Multiple+Hypothesis+Video+Relation+Detection&rft.au=Di%2C+Donglin&rft.au=Shang%2C+Xindi&rft.au=Zhang%2C+Weinan&rft.au=Yang%2C+Xun&rft.date=2019-09-01&rft.pub=IEEE&rft.spage=287&rft.epage=291&rft_id=info:doi/10.1109%2FBigMM.2019.000-9&rft.externalDocID=8919285 |