Comparative Analysis of K-Means and K-Nearest Neighbor Algorithm for Telecom Fraud Detection

This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges...

Full description

Saved in:
Bibliographic Details
Published in2022 2nd International Conference on Information Technology and Education (ICIT&E) pp. 107 - 111
Main Authors Andreswari, Rachmadita, Aprilia Rahmani, Dita, Rahmawati, Ria, Akbar H, Achmad
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges used by the user and causing losses to the operator. In this study, the classification of Telkomsel's quota data was carried out using the K-Nearest Neighbor algorithm and the K-Means algorithm. And, testing the confusion matrix as a comparison of the prediction results of the algorithm. By testing the K-Means algorithm using k = 2 and obtained an accuracy value of 0.8. While the K-Nearest Neighbor has a value with a higher level of accuracy with a value of 0.99 as an accurate classification method
AbstractList This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges used by the user and causing losses to the operator. In this study, the classification of Telkomsel's quota data was carried out using the K-Nearest Neighbor algorithm and the K-Means algorithm. And, testing the confusion matrix as a comparison of the prediction results of the algorithm. By testing the K-Means algorithm using k = 2 and obtained an accuracy value of 0.8. While the K-Nearest Neighbor has a value with a higher level of accuracy with a value of 0.99 as an accurate classification method
Author Andreswari, Rachmadita
Aprilia Rahmani, Dita
Rahmawati, Ria
Akbar H, Achmad
Author_xml – sequence: 1
  givenname: Rachmadita
  surname: Andreswari
  fullname: Andreswari, Rachmadita
  email: andreswari@telkomuniversity.ac.id
  organization: Information Systems Study Program Telkom University,Bandung,Indonesia
– sequence: 2
  givenname: Dita
  surname: Aprilia Rahmani
  fullname: Aprilia Rahmani, Dita
  email: ditaprllr@telkomuniversity.ac.id
  organization: Information Systems Study Program Telkom University,Bandung,Indonesia
– sequence: 3
  givenname: Ria
  surname: Rahmawati
  fullname: Rahmawati, Ria
  email: riarahmawati@telkomuniversity.ac.id
  organization: Information Systems Study Program Telkom University,Bandung,Indonesia
– sequence: 4
  givenname: Achmad
  surname: Akbar H
  fullname: Akbar H, Achmad
  email: achmadakbar@telkomuniversity.ac.id
  organization: Information Systems Study Program Telkom University,Bandung,Indonesia
BookMark eNotj7FOwzAURY0EAy18AQP-gYQ4dux4jEILEaUsYUOqXuLn1lISV45B6t9TqZ3OPcuVzoLcTn5CQp5ZljKW6ZembtpVIYSUaZ7leapVoc96QxZMykJowbm8Jz-1H48QILo_pNUEw2l2M_WWfiSfCNNMYTLnvUUIOEe6Rbc_dD7Qatj74OJhpPZsLQ7Y-5GuA_wa-ooR--j89EDuLAwzPl65JN_rVVu_J5uvt6auNoljrIwJ9laBFaZjittCqtxYpVGDUX1my5J1eQGd7iWHzBSCddyIXglA3knNbYl8SZ4uvw4Rd8fgRgin3TWY_wMTpVHF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICITE54466.2022.9759544
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665494336
9781665494335
EndPage 111
ExternalDocumentID 9759544
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-ecf7af4db173f5672df79e9ad7c0f881b25ab9c63a0d541b3d4c74ae3b693f8e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-ecf7af4db173f5672df79e9ad7c0f881b25ab9c63a0d541b3d4c74ae3b693f8e3
PageCount 5
ParticipantIDs ieee_primary_9759544
PublicationCentury 2000
PublicationDate 2022-Jan.-22
PublicationDateYYYYMMDD 2022-01-22
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2022 2nd International Conference on Information Technology and Education (ICIT&E)
PublicationTitleAbbrev ICIT&E
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8300256
Snippet This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications...
SourceID ieee
SourceType Publisher
StartPage 107
SubjectTerms Classification algorithms
confusion matrix
K-Means
K-Nearest Neighbor
Prediction algorithms
telecom fraud
Telecommunications
Testing
Title Comparative Analysis of K-Means and K-Nearest Neighbor Algorithm for Telecom Fraud Detection
URI https://ieeexplore.ieee.org/document/9759544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akyc1YHynB4922Ue7pUeDEtRAPEDCwYT0MVWi7BrcvfjrbZcFovHgrWmbtOm0-WamM98gdCVpL9JaUaJ6ShOnEYdEGQsEQrBMmkSlFWX-aJwOp_RhxmYNdL3NhQGAKvgMAt-s_vJNrkvvKusKzgSjtImaXIh1rlYdshWFonvfd4-d-f9JZ_bFcVDP_lE2pUKNwT4abdZbB4u8BWWhAv31i4rxvxs6QJ1dfh5-2iLPIWpA1kbP_R2RN95wjeDc4kcyAgdIWGbGtceetPazwGPvE3UXAN-8v-SrRfG6xE5_xRNfFydfYqfQlgbfQlGFamUdNB3cTfpDUtdOIAtnMhQEtOXSUqMinliW8thYLkBIw3Voe05XjZlUQqeJDA2jkUoM1ZxKcMIRie1BcoRaWZ7BMcJK00TFMrLWaApGK-UwPeGQOuPCuoET1PYnM_9Y02PM60M5_bv7DO156XgvRhyfo1axKuHC4XqhLiuBfgOei6dQ
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaR5OnIyoULW0iRhaqQNS5ccZKmiCSrLw67HTtBWIgc1yIjnyOfq-O999h9ANI5ErBCcWj7iwNCN2LC4VWOCACpj0eVhJ5idp2J-Qx2kwbaDbTS0MAFTJZ2CbYXWXL3NRmlBZJ6ZBHBCyg3Y1r47oqlqrTtpynbgz6OrfPTA3lNrx8zy7fv9H45QKN3oHKFmvuEoXebPLgtvi65cY438_6RC1txV6-GmDPUeoAVkLPXe3Ut54rTaCc4WHVgIakjDLpB6nRrb2s8CpiYrqI4Dv3l_y5bx4XWDNYPHYdMbJF1hT2lLieyiqZK2sjSa9h3G3b9XdE6y5dhoKC4SiTBHJXeqrIKSeVDSGmEkqHBVptuoFjMci9JkjA-JyXxJBCQNtnthXEfjHqJnlGZwgzAXxucdcpaQgIAXnGtV9CqF2L5R-cIpaZmdmHyuBjFm9KWd_T1-jvf44Gc1Gg3R4jvaNpUxMw_MuULNYlnCpUb7gV5VxvwGMdKqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Information+Technology+and+Education+%28ICIT%26E%29&rft.atitle=Comparative+Analysis+of+K-Means+and+K-Nearest+Neighbor+Algorithm+for+Telecom+Fraud+Detection&rft.au=Andreswari%2C+Rachmadita&rft.au=Aprilia+Rahmani%2C+Dita&rft.au=Rahmawati%2C+Ria&rft.au=Akbar+H%2C+Achmad&rft.date=2022-01-22&rft.pub=IEEE&rft.spage=107&rft.epage=111&rft_id=info:doi/10.1109%2FICITE54466.2022.9759544&rft.externalDocID=9759544