Comparative Analysis of K-Means and K-Nearest Neighbor Algorithm for Telecom Fraud Detection
This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges...
Saved in:
Published in | 2022 2nd International Conference on Information Technology and Education (ICIT&E) pp. 107 - 111 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
22.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges used by the user and causing losses to the operator. In this study, the classification of Telkomsel's quota data was carried out using the K-Nearest Neighbor algorithm and the K-Means algorithm. And, testing the confusion matrix as a comparison of the prediction results of the algorithm. By testing the K-Means algorithm using k = 2 and obtained an accuracy value of 0.8. While the K-Nearest Neighbor has a value with a higher level of accuracy with a value of 0.99 as an accurate classification method |
---|---|
AbstractList | This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications facilities in Indonesia. Telecom Fraud is a fraudulent activity in the service with the aim of using the service illegally by avoiding the charges used by the user and causing losses to the operator. In this study, the classification of Telkomsel's quota data was carried out using the K-Nearest Neighbor algorithm and the K-Means algorithm. And, testing the confusion matrix as a comparison of the prediction results of the algorithm. By testing the K-Means algorithm using k = 2 and obtained an accuracy value of 0.8. While the K-Nearest Neighbor has a value with a higher level of accuracy with a value of 0.99 as an accurate classification method |
Author | Andreswari, Rachmadita Aprilia Rahmani, Dita Rahmawati, Ria Akbar H, Achmad |
Author_xml | – sequence: 1 givenname: Rachmadita surname: Andreswari fullname: Andreswari, Rachmadita email: andreswari@telkomuniversity.ac.id organization: Information Systems Study Program Telkom University,Bandung,Indonesia – sequence: 2 givenname: Dita surname: Aprilia Rahmani fullname: Aprilia Rahmani, Dita email: ditaprllr@telkomuniversity.ac.id organization: Information Systems Study Program Telkom University,Bandung,Indonesia – sequence: 3 givenname: Ria surname: Rahmawati fullname: Rahmawati, Ria email: riarahmawati@telkomuniversity.ac.id organization: Information Systems Study Program Telkom University,Bandung,Indonesia – sequence: 4 givenname: Achmad surname: Akbar H fullname: Akbar H, Achmad email: achmadakbar@telkomuniversity.ac.id organization: Information Systems Study Program Telkom University,Bandung,Indonesia |
BookMark | eNotj7FOwzAURY0EAy18AQP-gYQ4dux4jEILEaUsYUOqXuLn1lISV45B6t9TqZ3OPcuVzoLcTn5CQp5ZljKW6ZembtpVIYSUaZ7leapVoc96QxZMykJowbm8Jz-1H48QILo_pNUEw2l2M_WWfiSfCNNMYTLnvUUIOEe6Rbc_dD7Qatj74OJhpPZsLQ7Y-5GuA_wa-ooR--j89EDuLAwzPl65JN_rVVu_J5uvt6auNoljrIwJ9laBFaZjittCqtxYpVGDUX1my5J1eQGd7iWHzBSCddyIXglA3knNbYl8SZ4uvw4Rd8fgRgin3TWY_wMTpVHF |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICITE54466.2022.9759544 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665494336 9781665494335 |
EndPage | 111 |
ExternalDocumentID | 9759544 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-ecf7af4db173f5672df79e9ad7c0f881b25ab9c63a0d541b3d4c74ae3b693f8e3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:36:59 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-ecf7af4db173f5672df79e9ad7c0f881b25ab9c63a0d541b3d4c74ae3b693f8e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9759544 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan.-22 |
PublicationDateYYYYMMDD | 2022-01-22 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | 2022 2nd International Conference on Information Technology and Education (ICIT&E) |
PublicationTitleAbbrev | ICIT&E |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8300256 |
Snippet | This study discusses problems that often occurs, namely telecom fraud. One of them is Telkomsel as the provider and is responsible for telecommunications... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 107 |
SubjectTerms | Classification algorithms confusion matrix K-Means K-Nearest Neighbor Prediction algorithms telecom fraud Telecommunications Testing |
Title | Comparative Analysis of K-Means and K-Nearest Neighbor Algorithm for Telecom Fraud Detection |
URI | https://ieeexplore.ieee.org/document/9759544 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akyc1YHynB4922Ue7pUeDEtRAPEDCwYT0MVWi7BrcvfjrbZcFovHgrWmbtOm0-WamM98gdCVpL9JaUaJ6ShOnEYdEGQsEQrBMmkSlFWX-aJwOp_RhxmYNdL3NhQGAKvgMAt-s_vJNrkvvKusKzgSjtImaXIh1rlYdshWFonvfd4-d-f9JZ_bFcVDP_lE2pUKNwT4abdZbB4u8BWWhAv31i4rxvxs6QJ1dfh5-2iLPIWpA1kbP_R2RN95wjeDc4kcyAgdIWGbGtceetPazwGPvE3UXAN-8v-SrRfG6xE5_xRNfFydfYqfQlgbfQlGFamUdNB3cTfpDUtdOIAtnMhQEtOXSUqMinliW8thYLkBIw3Voe05XjZlUQqeJDA2jkUoM1ZxKcMIRie1BcoRaWZ7BMcJK00TFMrLWaApGK-UwPeGQOuPCuoET1PYnM_9Y02PM60M5_bv7DO156XgvRhyfo1axKuHC4XqhLiuBfgOei6dQ |
link.rule.ids | 310,311,783,787,792,793,799,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaR5OnIyoULW0iRhaqQNS5ccZKmiCSrLw67HTtBWIgc1yIjnyOfq-O999h9ANI5ErBCcWj7iwNCN2LC4VWOCACpj0eVhJ5idp2J-Qx2kwbaDbTS0MAFTJZ2CbYXWXL3NRmlBZJ6ZBHBCyg3Y1r47oqlqrTtpynbgz6OrfPTA3lNrx8zy7fv9H45QKN3oHKFmvuEoXebPLgtvi65cY438_6RC1txV6-GmDPUeoAVkLPXe3Ut54rTaCc4WHVgIakjDLpB6nRrb2s8CpiYrqI4Dv3l_y5bx4XWDNYPHYdMbJF1hT2lLieyiqZK2sjSa9h3G3b9XdE6y5dhoKC4SiTBHJXeqrIKSeVDSGmEkqHBVptuoFjMci9JkjA-JyXxJBCQNtnthXEfjHqJnlGZwgzAXxucdcpaQgIAXnGtV9CqF2L5R-cIpaZmdmHyuBjFm9KWd_T1-jvf44Gc1Gg3R4jvaNpUxMw_MuULNYlnCpUb7gV5VxvwGMdKqc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Information+Technology+and+Education+%28ICIT%26E%29&rft.atitle=Comparative+Analysis+of+K-Means+and+K-Nearest+Neighbor+Algorithm+for+Telecom+Fraud+Detection&rft.au=Andreswari%2C+Rachmadita&rft.au=Aprilia+Rahmani%2C+Dita&rft.au=Rahmawati%2C+Ria&rft.au=Akbar+H%2C+Achmad&rft.date=2022-01-22&rft.pub=IEEE&rft.spage=107&rft.epage=111&rft_id=info:doi/10.1109%2FICITE54466.2022.9759544&rft.externalDocID=9759544 |