An image classification network for network traffic representation learning
Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and t...
Saved in:
Published in | 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT) pp. 358 - 361 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ISCIPT53667.2021.00078 |
Cover
Loading…
Abstract | Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and the rapid increase of network traffic, it is extremly necessary and urgent for rapid and accurate automatic classification of network traffic. Through the research of ResNet[3], DenseNet[4], GoogleN et[1] and other classic convolutional neural networks, this paper proposes a lightweight network traffic classification algorithm, which completes the network traffic classification task based on the design ideas and structural advantages of the MobileNet[2]. The comparative experimental results demonstrate that the algorithm can significantly reduce the training time and model size, and achieves a superior performance of network traffic classification. |
---|---|
AbstractList | Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and the rapid increase of network traffic, it is extremly necessary and urgent for rapid and accurate automatic classification of network traffic. Through the research of ResNet[3], DenseNet[4], GoogleN et[1] and other classic convolutional neural networks, this paper proposes a lightweight network traffic classification algorithm, which completes the network traffic classification task based on the design ideas and structural advantages of the MobileNet[2]. The comparative experimental results demonstrate that the algorithm can significantly reduce the training time and model size, and achieves a superior performance of network traffic classification. |
Author | Liu, Xinyan |
Author_xml | – sequence: 1 givenname: Xinyan surname: Liu fullname: Liu, Xinyan email: 1811650631@tiangong.edu.cn organization: Tiangong University,School of Computer Science and Technology,Tianjin,China |
BookMark | eNo9js1KxDAURiPoQsd5AkH6Aq33Jk3SLIfiT3FAwXE93LY3Q7CmQ1oQ397CyKy-b3E4nBtxGcfIQtwjFIjgHpqPunnfaWWMLSRILADAVhdi7WyFxuiyRGXttXjdxCx804GzbqBpCj50NIcxZpHnnzF9ZX5M5z8n8guQJT4mnjjOJ3RgSjHEw6248jRMvP7flfh8etzVL_n27bmpN9s8IFZzzhV6bVCyYwCPfilSyEpDS7KVPWHZtZIM9MpSS0DOlorJ9rpSrvdOqpW4O3kDM--PaelPv3tnylIjqD98K0z5 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISCIPT53667.2021.00078 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665441377 1665441372 |
EndPage | 361 |
ExternalDocumentID | 9644510 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-e81f5612e9e00f1f97831e350ba2b2da14cb2a60d37aba0a9743ea7d5839df923 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:53 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-e81f5612e9e00f1f97831e350ba2b2da14cb2a60d37aba0a9743ea7d5839df923 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9644510 |
PublicationCentury | 2000 |
PublicationDate | 2021-June |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
PublicationDecade | 2020 |
PublicationTitle | 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT) |
PublicationTitleAbbrev | ISCIPT |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7831765 |
Snippet | Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 358 |
SubjectTerms | Classification algorithms deep learning image classification Internet MobileNet Network security network traffic Planning Representation learning Telecommunication traffic Training |
Title | An image classification network for network traffic representation learning |
URI | https://ieeexplore.ieee.org/document/9644510 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmmaZD3KcGzKZOAGu42keZEhdjLai3-9SdpVFA_eQi4NLzTvfcn3fQ-hWwpZLkFRIsBmJNUsIUpbIIJnwI0yWoAHirNnMVmmjyu-6qC7VgsDAIF8BpEfhrd8s80rf1U2yIS303IA_cABt1qr1Yh-aZwNpi-j6XzBmRDS4b6ERiH__eiaEpLG-AjN9p-ruSJvUVXqKP_85cT43_Uco_63PA_P28RzgjpQ9NDTfYE37-50wLkviD0DKAQdFzXRG7vqtB2XO-WtI3CwtNzLjwrctJB47aPl-GExmpCmUwLZOIBQEhhS69tcQgZxbKn19zkUGI-1SnRiFE1znSgRGyaVVrFyIIKBkoa78shYV-Odom6xLeAM4dQqyawUIFMHHpjUVBvjhT7udwKu-Dnq-UCsP2ozjHUTg4u_py_Rod-Kmlt1hbrlroJrl8VLfRO27wuLcKBt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf5uDRbDebTeIepSit_aBgC72VZDORIm6lbC_-epPstqJ48BZy2TBhM_OS994gdEshyyUoSgTYjKSaJURpC0TwDLhRRgvwQHE0Fr1Z-jzn8wa622lhACCQzyDyw_CWb1b5xl-VdTLh7bQcQN_jXoxbqbVq2S-Ns07_pdufTDkTQjrkl9AoZMAffVNC2ng6RKPtByu2yFu0KXWUf_7yYvzvio5Q-1ughye71HOMGlC00OChwMt3dz7g3JfEngMUwo6LiuqNXX26G5dr5c0jcDC13AqQClw3kXhto9nT47TbI3WvBLJ0EKEkcE-tb3QJGcSxpdbf6FBgPNYq0YlRNM11okRsmFRaxcrBCAZKGu4KJGNdlXeCmsWqgFOEU6sks1KATB18YFJTbYyX-rgfCrjiZ6jlA7H4qOwwFnUMzv-evkH7velouBj2x4MLdOC3pWJaXaJmud7Alcvppb4OW_kFGHyjtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+6th+International+Symposium+on+Computer+and+Information+Processing+Technology+%28ISCIPT%29&rft.atitle=An+image+classification+network+for+network+traffic+representation+learning&rft.au=Liu%2C+Xinyan&rft.date=2021-06-01&rft.pub=IEEE&rft.spage=358&rft.epage=361&rft_id=info:doi/10.1109%2FISCIPT53667.2021.00078&rft.externalDocID=9644510 |