An image classification network for network traffic representation learning

Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and t...

Full description

Saved in:
Bibliographic Details
Published in2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT) pp. 358 - 361
Main Author Liu, Xinyan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2021
Subjects
Online AccessGet full text
DOI10.1109/ISCIPT53667.2021.00078

Cover

Loading…
Abstract Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and the rapid increase of network traffic, it is extremly necessary and urgent for rapid and accurate automatic classification of network traffic. Through the research of ResNet[3], DenseNet[4], GoogleN et[1] and other classic convolutional neural networks, this paper proposes a lightweight network traffic classification algorithm, which completes the network traffic classification task based on the design ideas and structural advantages of the MobileNet[2]. The comparative experimental results demonstrate that the algorithm can significantly reduce the training time and model size, and achieves a superior performance of network traffic classification.
AbstractList Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic tasks in the field of network planning, maintenance management, and network security[5]. Due to the rapid development of network technology and the rapid increase of network traffic, it is extremly necessary and urgent for rapid and accurate automatic classification of network traffic. Through the research of ResNet[3], DenseNet[4], GoogleN et[1] and other classic convolutional neural networks, this paper proposes a lightweight network traffic classification algorithm, which completes the network traffic classification task based on the design ideas and structural advantages of the MobileNet[2]. The comparative experimental results demonstrate that the algorithm can significantly reduce the training time and model size, and achieves a superior performance of network traffic classification.
Author Liu, Xinyan
Author_xml – sequence: 1
  givenname: Xinyan
  surname: Liu
  fullname: Liu, Xinyan
  email: 1811650631@tiangong.edu.cn
  organization: Tiangong University,School of Computer Science and Technology,Tianjin,China
BookMark eNo9js1KxDAURiPoQsd5AkH6Aq33Jk3SLIfiT3FAwXE93LY3Q7CmQ1oQ397CyKy-b3E4nBtxGcfIQtwjFIjgHpqPunnfaWWMLSRILADAVhdi7WyFxuiyRGXttXjdxCx804GzbqBpCj50NIcxZpHnnzF9ZX5M5z8n8guQJT4mnjjOJ3RgSjHEw6248jRMvP7flfh8etzVL_n27bmpN9s8IFZzzhV6bVCyYwCPfilSyEpDS7KVPWHZtZIM9MpSS0DOlorJ9rpSrvdOqpW4O3kDM--PaelPv3tnylIjqD98K0z5
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCIPT53667.2021.00078
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665441377
1665441372
EndPage 361
ExternalDocumentID 9644510
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e81f5612e9e00f1f97831e350ba2b2da14cb2a60d37aba0a9743ea7d5839df923
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:53 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e81f5612e9e00f1f97831e350ba2b2da14cb2a60d37aba0a9743ea7d5839df923
PageCount 4
ParticipantIDs ieee_primary_9644510
PublicationCentury 2000
PublicationDate 2021-June
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationTitle 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT)
PublicationTitleAbbrev ISCIPT
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7831765
Snippet Network traffic classification builds a mapping between traffic data and application types according to traffic characteristics, which is one of the basic...
SourceID ieee
SourceType Publisher
StartPage 358
SubjectTerms Classification algorithms
deep learning
image classification
Internet
MobileNet
Network security
network traffic
Planning
Representation learning
Telecommunication traffic
Training
Title An image classification network for network traffic representation learning
URI https://ieeexplore.ieee.org/document/9644510
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmmaZD3KcGzKZOAGu42keZEhdjLai3-9SdpVFA_eQi4NLzTvfcn3fQ-hWwpZLkFRIsBmJNUsIUpbIIJnwI0yWoAHirNnMVmmjyu-6qC7VgsDAIF8BpEfhrd8s80rf1U2yIS303IA_cABt1qr1Yh-aZwNpi-j6XzBmRDS4b6ERiH__eiaEpLG-AjN9p-ruSJvUVXqKP_85cT43_Uco_63PA_P28RzgjpQ9NDTfYE37-50wLkviD0DKAQdFzXRG7vqtB2XO-WtI3CwtNzLjwrctJB47aPl-GExmpCmUwLZOIBQEhhS69tcQgZxbKn19zkUGI-1SnRiFE1znSgRGyaVVrFyIIKBkoa78shYV-Odom6xLeAM4dQqyawUIFMHHpjUVBvjhT7udwKu-Dnq-UCsP2ozjHUTg4u_py_Rod-Kmlt1hbrlroJrl8VLfRO27wuLcKBt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf5uDRbDebTeIepSit_aBgC72VZDORIm6lbC_-epPstqJ48BZy2TBhM_OS994gdEshyyUoSgTYjKSaJURpC0TwDLhRRgvwQHE0Fr1Z-jzn8wa622lhACCQzyDyw_CWb1b5xl-VdTLh7bQcQN_jXoxbqbVq2S-Ns07_pdufTDkTQjrkl9AoZMAffVNC2ng6RKPtByu2yFu0KXWUf_7yYvzvio5Q-1ughye71HOMGlC00OChwMt3dz7g3JfEngMUwo6LiuqNXX26G5dr5c0jcDC13AqQClw3kXhto9nT47TbI3WvBLJ0EKEkcE-tb3QJGcSxpdbf6FBgPNYq0YlRNM11okRsmFRaxcrBCAZKGu4KJGNdlXeCmsWqgFOEU6sks1KATB18YFJTbYyX-rgfCrjiZ6jlA7H4qOwwFnUMzv-evkH7velouBj2x4MLdOC3pWJaXaJmud7Alcvppb4OW_kFGHyjtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+6th+International+Symposium+on+Computer+and+Information+Processing+Technology+%28ISCIPT%29&rft.atitle=An+image+classification+network+for+network+traffic+representation+learning&rft.au=Liu%2C+Xinyan&rft.date=2021-06-01&rft.pub=IEEE&rft.spage=358&rft.epage=361&rft_id=info:doi/10.1109%2FISCIPT53667.2021.00078&rft.externalDocID=9644510