Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data
This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations a...
Saved in:
Published in | 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB) pp. 43 - 46 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CSGB51356.2020.9214622 |
Cover
Loading…
Abstract | This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations are used to evaluate the clustering performance. The experiments show that the proposed algorithm significantly outperforms other considered variants of clustering framework with respect to clustering accuracy. |
---|---|
AbstractList | This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations are used to evaluate the clustering performance. The experiments show that the proposed algorithm significantly outperforms other considered variants of clustering framework with respect to clustering accuracy. |
Author | Berikov, Vladimir |
Author_xml | – sequence: 1 givenname: Vladimir surname: Berikov fullname: Berikov, Vladimir organization: Institute of Mathematics SB RAS,Data analysis laboratory,Novosibirsk,Russia |
BookMark | eNotj91KwzAYQCPohZs-gSB5gdZ8SdM2l1udUykITq9Hfr6MYJeMtEN8ewfb1bk5HDgzch1TREIegZUATD11m_VSgpB1yRlnpeJQ1ZxfkRk0vAUlVa1uyfviOCWMNjnMhdEjOtqn3-JTxx-6OaCdsh7oKo64NwPSbjiOE-YQdzR5ugxpSLtgT8aznvQdufF6GPH-wjn5fll9da9F_7F-6xZ9EQDaqXCNcYYBikoBIEjlvAbWeCVFC1AbqYzwXkLbciGMk_YkouTAjIXGVrWYk4dzNyDi9pDDXue_7WVP_ANI-UmX |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CSGB51356.2020.9214622 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728195969 9781728195964 1728195977 9781728195971 |
EndPage | 46 |
ExternalDocumentID | 9214622 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-d7bdb01e34911e159dfa107f9538116b59b3ff5188233bd5c349e5210bc17c463 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:15 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-d7bdb01e34911e159dfa107f9538116b59b3ff5188233bd5c349e5210bc17c463 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9214622 |
PublicationCentury | 2000 |
PublicationDate | 2020-July |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
PublicationDecade | 2020 |
PublicationTitle | 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB) |
PublicationTitleAbbrev | CSGB |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7293222 |
Snippet | This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 43 |
SubjectTerms | autoencoder Bioinformatics Cardiography cardiotocography Clustering algorithms ensemble clustering low-rank decomposition Matrix decomposition Mice mice protein expression Partitioning algorithms Proteins spectral clustering |
Title | Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data |
URI | https://ieeexplore.ieee.org/document/9214622 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXh00ya7mzZHra2lWBG10FvJ7k5AWhOpCYK_3pkkVhQP3kLYfLAT5u1O3rzH2HkfMVYSS7wXhFYoo7UwARiBUOv6KnaIOFSHnN6F45mazPW8wS42vTAAUJLPwKPD8l--y2xBpbJORC7UASbcLfzMql6tuunX70adwePNlfalJuJB0PXqwT9cU0rQGO2w6dfjKq7I0ity49mPX0qM_32fXdb-bs_j9xvg2WMNSFtsclnkGalSOlgLwibHb7N38RCnS04m81TR4MP0DV7MCvhgVZBCAl7Os4RXhpQULn4d53GbzUbDp8FY1EYJ4hn3B7lwPeNM1wepMHUBLlBcEuO2Lokwm_l-aHRkZJKQ9FogpXHa4kBA3O4a6_esCuU-a6ZZCgeMS-3bwMUUNKU0Lj5sXycaLN3fhio6ZC2ah8VrpYWxqKfg6O_Tx2ybYlHRW09YM18XcIognpuzMnqfCSGcDw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YNHN02yu2lz1FqttS2iLfRWsh8BaU2kJgj-emeSWFE8eAthNwk7MG938uY9Qs47gLEcWeJtP9BMKCmZ8q1iALWmIyIDiIN1yNE46E_FYCZnNXKx7oWx1hbkM-vgZfEv36Q6x1JZK0QXah8S7gbgvpBlt1bV9uu5Yav7dHslPS6ReuC7TjX8h29KARs322T09cKSLbJw8kw5-uOXFuN_v2iHNL8b9OjDGnp2Sc0mDTK4zLMUdSmNXTFEJ0OH6Tt7jJIFRZt5rGnQXvJmX9TS0u4yR40EmE7TmJaWlBgweh1lUZNMb3qTbp9VVgnsGU4IGTNtZZTrWS4geVnYopg4goNdHEI-87xAyVDxOEbxNZ9zZaSGgRaQ21Xaa2sR8D1ST9LE7hPKpad9E2HYhJCw_dAdGUur8fk6EOEBaeA6zF9LNYx5tQSHf98-I5v9yWg4H96N74_IFsalJLsek3q2yu0JQHqmTotIfgJm2p9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Cognitive+Sciences%2C+Genomics+and+Bioinformatics+%28CSGB%29&rft.atitle=Autoencoder-based+Low-Rank+Spectral+Ensemble+Clustering+of+Biological+Data&rft.au=Berikov%2C+Vladimir&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=43&rft.epage=46&rft_id=info:doi/10.1109%2FCSGB51356.2020.9214622&rft.externalDocID=9214622 |