Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data

This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations a...

Full description

Saved in:
Bibliographic Details
Published in2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB) pp. 43 - 46
Main Author Berikov, Vladimir
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2020
Subjects
Online AccessGet full text
DOI10.1109/CSGB51356.2020.9214622

Cover

Loading…
Abstract This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations are used to evaluate the clustering performance. The experiments show that the proposed algorithm significantly outperforms other considered variants of clustering framework with respect to clustering accuracy.
AbstractList This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations are used to evaluate the clustering performance. The experiments show that the proposed algorithm significantly outperforms other considered variants of clustering framework with respect to clustering accuracy.
Author Berikov, Vladimir
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Berikov
  fullname: Berikov, Vladimir
  organization: Institute of Mathematics SB RAS,Data analysis laboratory,Novosibirsk,Russia
BookMark eNotj91KwzAYQCPohZs-gSB5gdZ8SdM2l1udUykITq9Hfr6MYJeMtEN8ewfb1bk5HDgzch1TREIegZUATD11m_VSgpB1yRlnpeJQ1ZxfkRk0vAUlVa1uyfviOCWMNjnMhdEjOtqn3-JTxx-6OaCdsh7oKo64NwPSbjiOE-YQdzR5ugxpSLtgT8aznvQdufF6GPH-wjn5fll9da9F_7F-6xZ9EQDaqXCNcYYBikoBIEjlvAbWeCVFC1AbqYzwXkLbciGMk_YkouTAjIXGVrWYk4dzNyDi9pDDXue_7WVP_ANI-UmX
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSGB51356.2020.9214622
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728195969
9781728195964
1728195977
9781728195971
EndPage 46
ExternalDocumentID 9214622
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d7bdb01e34911e159dfa107f9538116b59b3ff5188233bd5c349e5210bc17c463
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d7bdb01e34911e159dfa107f9538116b59b3ff5188233bd5c349e5210bc17c463
PageCount 4
ParticipantIDs ieee_primary_9214622
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB)
PublicationTitleAbbrev CSGB
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7293222
Snippet This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and...
SourceID ieee
SourceType Publisher
StartPage 43
SubjectTerms autoencoder
Bioinformatics
Cardiography
cardiotocography
Clustering algorithms
ensemble clustering
low-rank decomposition
Matrix decomposition
Mice
mice protein expression
Partitioning algorithms
Proteins
spectral clustering
Title Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data
URI https://ieeexplore.ieee.org/document/9214622
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXh00ya7mzZHra2lWBG10FvJ7k5AWhOpCYK_3pkkVhQP3kLYfLAT5u1O3rzH2HkfMVYSS7wXhFYoo7UwARiBUOv6KnaIOFSHnN6F45mazPW8wS42vTAAUJLPwKPD8l--y2xBpbJORC7UASbcLfzMql6tuunX70adwePNlfalJuJB0PXqwT9cU0rQGO2w6dfjKq7I0ity49mPX0qM_32fXdb-bs_j9xvg2WMNSFtsclnkGalSOlgLwibHb7N38RCnS04m81TR4MP0DV7MCvhgVZBCAl7Os4RXhpQULn4d53GbzUbDp8FY1EYJ4hn3B7lwPeNM1wepMHUBLlBcEuO2Lokwm_l-aHRkZJKQ9FogpXHa4kBA3O4a6_esCuU-a6ZZCgeMS-3bwMUUNKU0Lj5sXycaLN3fhio6ZC2ah8VrpYWxqKfg6O_Tx2ybYlHRW09YM18XcIognpuzMnqfCSGcDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YNHN02yu2lz1FqttS2iLfRWsh8BaU2kJgj-emeSWFE8eAthNwk7MG938uY9Qs47gLEcWeJtP9BMKCmZ8q1iALWmIyIDiIN1yNE46E_FYCZnNXKx7oWx1hbkM-vgZfEv36Q6x1JZK0QXah8S7gbgvpBlt1bV9uu5Yav7dHslPS6ReuC7TjX8h29KARs322T09cKSLbJw8kw5-uOXFuN_v2iHNL8b9OjDGnp2Sc0mDTK4zLMUdSmNXTFEJ0OH6Tt7jJIFRZt5rGnQXvJmX9TS0u4yR40EmE7TmJaWlBgweh1lUZNMb3qTbp9VVgnsGU4IGTNtZZTrWS4geVnYopg4goNdHEI-87xAyVDxOEbxNZ9zZaSGgRaQ21Xaa2sR8D1ST9LE7hPKpad9E2HYhJCw_dAdGUur8fk6EOEBaeA6zF9LNYx5tQSHf98-I5v9yWg4H96N74_IFsalJLsek3q2yu0JQHqmTotIfgJm2p9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Cognitive+Sciences%2C+Genomics+and+Bioinformatics+%28CSGB%29&rft.atitle=Autoencoder-based+Low-Rank+Spectral+Ensemble+Clustering+of+Biological+Data&rft.au=Berikov%2C+Vladimir&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=43&rft.epage=46&rft_id=info:doi/10.1109%2FCSGB51356.2020.9214622&rft.externalDocID=9214622