Categorization of Learning Materials Using Multilabel Classification

Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilab...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Electrical and Information Technology (IEIT) pp. 167 - 171
Main Authors Alfiani, Fadilla Sukma, Imamah, Yuhana, Umi Laili
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.09.2021
Subjects
Online AccessGet full text
DOI10.1109/IEIT53149.2021.9587387

Cover

Loading…
Abstract Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilabel classification. Multilabel problem is handled by problem transformation approach. The problem transformation methods used are Binary Relevance, Label Powerset, and Classifier Chain. While the classification algorithms are Naive Bayes, SVM, and Random Forest. The dataset used in this study is 448 learning materials which are science subject materials that include biology, physics, and chemistry for junior high school students. The evaluation results show that the best combination is achieved by Binary Relevance method and SVM algorithm with accuracy value of 0.966 for topics and 0.699 for subtopics.
AbstractList Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilabel classification. Multilabel problem is handled by problem transformation approach. The problem transformation methods used are Binary Relevance, Label Powerset, and Classifier Chain. While the classification algorithms are Naive Bayes, SVM, and Random Forest. The dataset used in this study is 448 learning materials which are science subject materials that include biology, physics, and chemistry for junior high school students. The evaluation results show that the best combination is achieved by Binary Relevance method and SVM algorithm with accuracy value of 0.966 for topics and 0.699 for subtopics.
Author Imamah
Alfiani, Fadilla Sukma
Yuhana, Umi Laili
Author_xml – sequence: 1
  givenname: Fadilla Sukma
  surname: Alfiani
  fullname: Alfiani, Fadilla Sukma
  email: fadilla16@mhs.if.its.ac.id
  organization: Institut Teknologi Sepuluh Nopember,Department of Informatics,Surabaya,Indonesia
– sequence: 2
  surname: Imamah
  fullname: Imamah
  email: imamah.207022@mhs.its.ac.id
  organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia
– sequence: 3
  givenname: Umi Laili
  surname: Yuhana
  fullname: Yuhana, Umi Laili
  email: yuhana@if.its.ac.id
  organization: Institut Teknologi Sepuluh Nopember,Department of Informatics,Surabaya,Indonesia
BookMark eNotj81KAzEcxCPoQWufQJC8wK755ztHWatdWPHSnks2HyUQs5JdD_r0ltrTMMxvBuYOXZepBIQegbQAxDz1m34nGHDTUkKhNUIrptUVWhulQUrBQWlJbtFLZ5dwnGr6tUuaCp4iHoKtJZUjfj9FNdk84_189t95SdmOIeMu23lOMblz6x7dxBMW1hddof3rZtdtm-Hjre-ehyYB6KVxngbKuFPOx1F6H6nShlJGtYuWySCAOc91lOCtMUSC0Y7TaLkYJWeMshV6-N9NIYTDV02ftv4cLt_YH70YSbE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEIT53149.2021.9587387
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore (IEEE/IET Electronic Library - IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISBN 9781665417860
1665417862
EndPage 171
ExternalDocumentID 9587387
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-cd2e234c7cdfb6ddf278922328cfa36e513cd48f61da9906198c42fa45b643323
IEDL.DBID RIE
IngestDate Wed Jun 11 06:03:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-cd2e234c7cdfb6ddf278922328cfa36e513cd48f61da9906198c42fa45b643323
PageCount 5
ParticipantIDs ieee_primary_9587387
PublicationCentury 2000
PublicationDate 2021-Sept.-14
PublicationDateYYYYMMDD 2021-09-14
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-14
  day: 14
PublicationDecade 2020
PublicationTitle 2021 International Conference on Electrical and Information Technology (IEIT)
PublicationTitleAbbrev IEIT
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7798264
Snippet Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the...
SourceID ieee
SourceType Publisher
StartPage 167
SubjectTerms Adaptive learning
Biology
Chemistry
Classification algorithms
Data models
Information technology
learning materials
multilabel classification
Support vector machines
text processing
Title Categorization of Learning Materials Using Multilabel Classification
URI https://ieeexplore.ieee.org/document/9587387
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sA9GTuk38TQ4ebbe0aZac52QTJh422G00L4mIssroDvrXm6TdRPHgrYSWlvcefHnp930P4MZhGHO7CIxsjjpimaSRQO0t9xWXSjgEw8DyfeTjOXtYZIsG3O60MMaYQD4zsb8M__J1gRt_VNaTmRikYtCEpmvcKq1WLfqlfdmbjCYzV1HMy08SGtc3_5iaEkDj_hCm29dVXJHXeFOqGD9_OTH-93uOoPstzyNPO-A5hoZZtWGvmir50Yb94XaIWwfuht4JoljXaktSWFI7qj6TaV5W5UcCb4AELa4rCvNGwqhMTyIKT3Vhfj-aDcdRPTghenH9Qhm5YJskZThAbRXX2nq5q9sHJAJtnnKT0RQ1E5ZTnTs0cj2UQJbYnGWKez-z9ARaq2JlToEIZTJrXQot5yzvS2FTo41EiYxrVPQMOj4uy_fKG2NZh-T87-ULOPC58XwLyi6hVa435sqBeqmuQza_AP6Yo-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BjMGTChh_24NHN-jWlu6MEFAgHiDhRtZfxmCYIeOgf71tNzAaD96WZk2X917ytd33fQ_gzmIYsbsIGZhUqoDQBAdcKme5L1giuEUw6Vm-EzaYkcc5nVfgfqeF0Vp78pkO3aP_l68yuXFXZa2E8k7MO3uwbxeguFBrlbJf3E5aw95wamuKOAFKhMPy9R99Uzxs9I9gvF2wYIssw00uQvn5y4vxv190DM1vgR563kHPCVT0qg4HRV_JjzrUuts2bg146DoviGxd6i1RZlDpqfqCxmleFCDyzAHk1bi2LPQb8s0yHY3Iz2rCrN-bdgdB2ToheLUnhjyw4dZRTGRHKiOYUsYJXu1OIOLSpDHTFMdSEW4YVqnFI3uK4pJEJiVUMOdoFp9CdZWt9BkgLjQ1xibRMEbSdsJNrJVOZCIJU1Lgc2i4uCzeC3eMRRmSi7-Hb6E2mI5Hi9Fw8nQJhy5Pjn2ByRVU8_VGX1uIz8WNz-wXui2nNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Electrical+and+Information+Technology+%28IEIT%29&rft.atitle=Categorization+of+Learning+Materials+Using+Multilabel+Classification&rft.au=Alfiani%2C+Fadilla+Sukma&rft.au=Imamah&rft.au=Yuhana%2C+Umi+Laili&rft.date=2021-09-14&rft.pub=IEEE&rft.spage=167&rft.epage=171&rft_id=info:doi/10.1109%2FIEIT53149.2021.9587387&rft.externalDocID=9587387