Categorization of Learning Materials Using Multilabel Classification
Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilab...
Saved in:
Published in | 2021 International Conference on Electrical and Information Technology (IEIT) pp. 167 - 171 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.09.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IEIT53149.2021.9587387 |
Cover
Loading…
Abstract | Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilabel classification. Multilabel problem is handled by problem transformation approach. The problem transformation methods used are Binary Relevance, Label Powerset, and Classifier Chain. While the classification algorithms are Naive Bayes, SVM, and Random Forest. The dataset used in this study is 448 learning materials which are science subject materials that include biology, physics, and chemistry for junior high school students. The evaluation results show that the best combination is achieved by Binary Relevance method and SVM algorithm with accuracy value of 0.966 for topics and 0.699 for subtopics. |
---|---|
AbstractList | Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the categorization of learning materials can be done first. This study aims to categorize learning materials based on topics and subtopics with multilabel classification. Multilabel problem is handled by problem transformation approach. The problem transformation methods used are Binary Relevance, Label Powerset, and Classifier Chain. While the classification algorithms are Naive Bayes, SVM, and Random Forest. The dataset used in this study is 448 learning materials which are science subject materials that include biology, physics, and chemistry for junior high school students. The evaluation results show that the best combination is achieved by Binary Relevance method and SVM algorithm with accuracy value of 0.966 for topics and 0.699 for subtopics. |
Author | Imamah Alfiani, Fadilla Sukma Yuhana, Umi Laili |
Author_xml | – sequence: 1 givenname: Fadilla Sukma surname: Alfiani fullname: Alfiani, Fadilla Sukma email: fadilla16@mhs.if.its.ac.id organization: Institut Teknologi Sepuluh Nopember,Department of Informatics,Surabaya,Indonesia – sequence: 2 surname: Imamah fullname: Imamah email: imamah.207022@mhs.its.ac.id organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia – sequence: 3 givenname: Umi Laili surname: Yuhana fullname: Yuhana, Umi Laili email: yuhana@if.its.ac.id organization: Institut Teknologi Sepuluh Nopember,Department of Informatics,Surabaya,Indonesia |
BookMark | eNotj81KAzEcxCPoQWufQJC8wK755ztHWatdWPHSnks2HyUQs5JdD_r0ltrTMMxvBuYOXZepBIQegbQAxDz1m34nGHDTUkKhNUIrptUVWhulQUrBQWlJbtFLZ5dwnGr6tUuaCp4iHoKtJZUjfj9FNdk84_189t95SdmOIeMu23lOMblz6x7dxBMW1hddof3rZtdtm-Hjre-ehyYB6KVxngbKuFPOx1F6H6nShlJGtYuWySCAOc91lOCtMUSC0Y7TaLkYJWeMshV6-N9NIYTDV02ftv4cLt_YH70YSbE |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IEIT53149.2021.9587387 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore (IEEE/IET Electronic Library - IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISBN | 9781665417860 1665417862 |
EndPage | 171 |
ExternalDocumentID | 9587387 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-cd2e234c7cdfb6ddf278922328cfa36e513cd48f61da9906198c42fa45b643323 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 11 06:03:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-cd2e234c7cdfb6ddf278922328cfa36e513cd48f61da9906198c42fa45b643323 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9587387 |
PublicationCentury | 2000 |
PublicationDate | 2021-Sept.-14 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Conference on Electrical and Information Technology (IEIT) |
PublicationTitleAbbrev | IEIT |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7798264 |
Snippet | Adaptive learning can adjust learning materials based on students' individual abilities. To facilitate the selection of appropriate materials, the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 167 |
SubjectTerms | Adaptive learning Biology Chemistry Classification algorithms Data models Information technology learning materials multilabel classification Support vector machines text processing |
Title | Categorization of Learning Materials Using Multilabel Classification |
URI | https://ieeexplore.ieee.org/document/9587387 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sA9GTuk38TQ4ebbe0aZac52QTJh422G00L4mIssroDvrXm6TdRPHgrYSWlvcefHnp930P4MZhGHO7CIxsjjpimaSRQO0t9xWXSjgEw8DyfeTjOXtYZIsG3O60MMaYQD4zsb8M__J1gRt_VNaTmRikYtCEpmvcKq1WLfqlfdmbjCYzV1HMy08SGtc3_5iaEkDj_hCm29dVXJHXeFOqGD9_OTH-93uOoPstzyNPO-A5hoZZtWGvmir50Yb94XaIWwfuht4JoljXaktSWFI7qj6TaV5W5UcCb4AELa4rCvNGwqhMTyIKT3Vhfj-aDcdRPTghenH9Qhm5YJskZThAbRXX2nq5q9sHJAJtnnKT0RQ1E5ZTnTs0cj2UQJbYnGWKez-z9ARaq2JlToEIZTJrXQot5yzvS2FTo41EiYxrVPQMOj4uy_fKG2NZh-T87-ULOPC58XwLyi6hVa435sqBeqmuQza_AP6Yo-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BjMGTChh_24NHN-jWlu6MEFAgHiDhRtZfxmCYIeOgf71tNzAaD96WZk2X917ytd33fQ_gzmIYsbsIGZhUqoDQBAdcKme5L1giuEUw6Vm-EzaYkcc5nVfgfqeF0Vp78pkO3aP_l68yuXFXZa2E8k7MO3uwbxeguFBrlbJf3E5aw95wamuKOAFKhMPy9R99Uzxs9I9gvF2wYIssw00uQvn5y4vxv190DM1vgR563kHPCVT0qg4HRV_JjzrUuts2bg146DoviGxd6i1RZlDpqfqCxmleFCDyzAHk1bi2LPQb8s0yHY3Iz2rCrN-bdgdB2ToheLUnhjyw4dZRTGRHKiOYUsYJXu1OIOLSpDHTFMdSEW4YVqnFI3uK4pJEJiVUMOdoFp9CdZWt9BkgLjQ1xibRMEbSdsJNrJVOZCIJU1Lgc2i4uCzeC3eMRRmSi7-Hb6E2mI5Hi9Fw8nQJhy5Pjn2ByRVU8_VGX1uIz8WNz-wXui2nNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Electrical+and+Information+Technology+%28IEIT%29&rft.atitle=Categorization+of+Learning+Materials+Using+Multilabel+Classification&rft.au=Alfiani%2C+Fadilla+Sukma&rft.au=Imamah&rft.au=Yuhana%2C+Umi+Laili&rft.date=2021-09-14&rft.pub=IEEE&rft.spage=167&rft.epage=171&rft_id=info:doi/10.1109%2FIEIT53149.2021.9587387&rft.externalDocID=9587387 |