Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm

With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify pa...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 338 - 342
Main Authors Zhang, Chao, Zhang, Hua, Zhang, Yong, Wang, Jian, Xiao, Donglin, Xu, Lingling, Chen, Wei, Cao, Yuanshan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2021
Subjects
Online AccessGet full text
DOI10.1109/AIEA53260.2021.00078

Cover

Loading…
Abstract With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify parameters from simulation observed data of the horizontal motions of HUG. After comparing with the actual value, the identification error is within the allowable range. The identification results are also compared with the results of Particle Swarm Optimization (PSO) algorithm and Least Square (LS) algorithm. The simulation results show that the parameter identification results using DE algorithm are significantly better than other comparison methods. The effectiveness of the algorithm is illustrated, and the method is not affected by the selection of initial parameter values, and has good robustness and global optimization characteristics. Finally, the model is verified by motion simulation, and the results show that the algorithm can effectively identify hydrodynamic parameters, which can provide a reference for engineering practice.
AbstractList With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify parameters from simulation observed data of the horizontal motions of HUG. After comparing with the actual value, the identification error is within the allowable range. The identification results are also compared with the results of Particle Swarm Optimization (PSO) algorithm and Least Square (LS) algorithm. The simulation results show that the parameter identification results using DE algorithm are significantly better than other comparison methods. The effectiveness of the algorithm is illustrated, and the method is not affected by the selection of initial parameter values, and has good robustness and global optimization characteristics. Finally, the model is verified by motion simulation, and the results show that the algorithm can effectively identify hydrodynamic parameters, which can provide a reference for engineering practice.
Author Chen, Wei
Wang, Jian
Xu, Lingling
Zhang, Chao
Xiao, Donglin
Zhang, Hua
Cao, Yuanshan
Zhang, Yong
Author_xml – sequence: 1
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 2
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  email: 1907772355@qq.com
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 3
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 5
  givenname: Donglin
  surname: Xiao
  fullname: Xiao, Donglin
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 6
  givenname: Lingling
  surname: Xu
  fullname: Xu, Lingling
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 7
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: China Ship Scientific Research Center,Wuxi,China
– sequence: 8
  givenname: Yuanshan
  surname: Cao
  fullname: Cao, Yuanshan
  organization: China Ship Scientific Research Center,Wuxi,China
BookMark eNotjLFOwzAURY0EA5R-AQz-gQTbsR17rKoClSrBAHPl5D23T0oc5KZF_XtSYLrDOefeses0JGTsUYpSSuGfFuvVwlTKilIJJUshRO2u2NzXTlpr9ESMu2X4HnLoccTMCTCNFKkNIw2JD5Hvz00mKCDTCRM_JsD8HS7qrpvkzJtwQOCTCxQj5kseOo6noTv-XoRuN2Qa9_09u4mhO-D8f2fs83n1sXwtNm8v6-ViU5CUbiwa3yrhoW1t47UUiCZqZZtKe4c6eq0i1MZ5bWpbTQBUlB6cqDWAbMGpasYe_n4JEbdfmfqQz1tvlJmy6gd42FWz
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIEA53260.2021.00078
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432658
1665432659
EndPage 342
ExternalDocumentID 9525589
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-b9c209dcc6b9410ee5f426b3498e4f942fd758945763426d2f19d8074dd1cd823
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-b9c209dcc6b9410ee5f426b3498e4f942fd758945763426d2f19d8074dd1cd823
PageCount 5
ParticipantIDs ieee_primary_9525589
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
PublicationTitleAbbrev AIEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7660974
Snippet With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE)...
SourceID ieee
SourceType Publisher
StartPage 338
SubjectTerms Adaptation models
Analytical models
differential evolution algorithm
Heuristic algorithms
hybrid-driven underwater gliders
hydrodynamic parameter
Hydrodynamics
Parameter estimation
parameter identification
Simulation
Unmanned underwater vehicles
Title Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm
URI https://ieeexplore.ieee.org/document/9525589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidPXi0pd1ul-6RGAiaaDhIwo3s7myBiNQ0BaO_3tm2YDQevDXtNG1mtp157XszhNyEQmmVmNgTMWITDqH1JCjEPImNFNYjXFYE2ScxmvCHaTxtkNu9FsZaW5LPrO82y3_5kJmN-1TWlTEWwIlskiYCt0qrVavhwkB2-_eDfozVSICoj4V-mf1-zEwpU8bwkDzuLlYxRV78TaF98_mrD-N_7-aIdL7FeXS8TzvHpGHXbWLHyrGs0El0CTUBqPQ5zVK6-HCyLA9y92ajTjWWvytnOl85ER51mQwo2u6mpeBTv6J2W69KqlbzLF8Wi9cOmQwHz3cjr56g4C0ROBSeloYFEowRWvIwsDZOMSPrCCNgeSo5SwHxguQIOiI8ACwNJbj2OAChgYRFJ6S1ztb2lFA8mSuRSjTWXJhEGt7DVSggZr1EAzsjbeei2VvVJGNWe-f8790X5MAFqWIOXpJWkW_sFWb3Ql-XYf0CveCotQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjLe12t3SPxEBAgXCAhBvZrwIRqWmKRn-9s23BaDx4a9pp2sxsO_Pa92YQuvNDIUWkmBMywCZU-8bhWgDmiUwgoB6hvCDIDsPuhD5O2bSC7ndaGGNMTj4zrt3M_-XrRG3sp7IGZ1AAR3wP7TMrxi3UWqUezvd4o9VrtxjUIx7gPuK7ef77MTUlTxqdIzTYXq7gijy7m0y66vNXJ8b_3s8xqn_L8_Bol3hOUMWsa8iMhOVZgZvwUpcUoNzrOInx4sMKsxyd2ncbtrqx9F1Y0_nKyvCwzWUag-12Xgo89yts3sp1icVqnqTLbPFSR5NOe_zQdcoZCs4SoEPmSK6Ix7VSoeTU94xhMeRkGUAMDI05JbEGxMApwI4ADmgS-1zbBjla-0pHJDhF1XWyNmcIw8lUhDEHY0lDFXFFm7AOQ81IM5KanKOaddHstWiTMSu9c_H37lt00B0P-rN-b_h0iQ5twAoe4RWqZunGXEOuz-RNHuIvtK6r_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Parameter+identification+of+hybrid-driven+underwater+glider+based+on+differential+evolution+algorithm&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Hua&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Jian&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=338&rft.epage=342&rft_id=info:doi/10.1109%2FAIEA53260.2021.00078&rft.externalDocID=9525589