Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm
With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify pa...
Saved in:
Published in | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 338 - 342 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/AIEA53260.2021.00078 |
Cover
Loading…
Abstract | With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify parameters from simulation observed data of the horizontal motions of HUG. After comparing with the actual value, the identification error is within the allowable range. The identification results are also compared with the results of Particle Swarm Optimization (PSO) algorithm and Least Square (LS) algorithm. The simulation results show that the parameter identification results using DE algorithm are significantly better than other comparison methods. The effectiveness of the algorithm is illustrated, and the method is not affected by the selection of initial parameter values, and has good robustness and global optimization characteristics. Finally, the model is verified by motion simulation, and the results show that the algorithm can effectively identify hydrodynamic parameters, which can provide a reference for engineering practice. |
---|---|
AbstractList | With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE) algorithm which has designed adaptive factors is proposed. On the basis of dynamic modeling and analysis, this method is used to identify parameters from simulation observed data of the horizontal motions of HUG. After comparing with the actual value, the identification error is within the allowable range. The identification results are also compared with the results of Particle Swarm Optimization (PSO) algorithm and Least Square (LS) algorithm. The simulation results show that the parameter identification results using DE algorithm are significantly better than other comparison methods. The effectiveness of the algorithm is illustrated, and the method is not affected by the selection of initial parameter values, and has good robustness and global optimization characteristics. Finally, the model is verified by motion simulation, and the results show that the algorithm can effectively identify hydrodynamic parameters, which can provide a reference for engineering practice. |
Author | Chen, Wei Wang, Jian Xu, Lingling Zhang, Chao Xiao, Donglin Zhang, Hua Cao, Yuanshan Zhang, Yong |
Author_xml | – sequence: 1 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: China Ship Scientific Research Center,Wuxi,China – sequence: 2 givenname: Hua surname: Zhang fullname: Zhang, Hua email: 1907772355@qq.com organization: China Ship Scientific Research Center,Wuxi,China – sequence: 3 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: China Ship Scientific Research Center,Wuxi,China – sequence: 4 givenname: Jian surname: Wang fullname: Wang, Jian organization: China Ship Scientific Research Center,Wuxi,China – sequence: 5 givenname: Donglin surname: Xiao fullname: Xiao, Donglin organization: China Ship Scientific Research Center,Wuxi,China – sequence: 6 givenname: Lingling surname: Xu fullname: Xu, Lingling organization: China Ship Scientific Research Center,Wuxi,China – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei organization: China Ship Scientific Research Center,Wuxi,China – sequence: 8 givenname: Yuanshan surname: Cao fullname: Cao, Yuanshan organization: China Ship Scientific Research Center,Wuxi,China |
BookMark | eNotjLFOwzAURY0EA5R-AQz-gQTbsR17rKoClSrBAHPl5D23T0oc5KZF_XtSYLrDOefeses0JGTsUYpSSuGfFuvVwlTKilIJJUshRO2u2NzXTlpr9ESMu2X4HnLoccTMCTCNFKkNIw2JD5Hvz00mKCDTCRM_JsD8HS7qrpvkzJtwQOCTCxQj5kseOo6noTv-XoRuN2Qa9_09u4mhO-D8f2fs83n1sXwtNm8v6-ViU5CUbiwa3yrhoW1t47UUiCZqZZtKe4c6eq0i1MZ5bWpbTQBUlB6cqDWAbMGpasYe_n4JEbdfmfqQz1tvlJmy6gd42FWz |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIEA53260.2021.00078 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665432658 1665432659 |
EndPage | 342 |
ExternalDocumentID | 9525589 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-b9c209dcc6b9410ee5f426b3498e4f942fd758945763426d2f19d8074dd1cd823 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:49 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-b9c209dcc6b9410ee5f426b3498e4f942fd758945763426d2f19d8074dd1cd823 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9525589 |
PublicationCentury | 2000 |
PublicationDate | 2021-May |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) |
PublicationTitleAbbrev | AIEA |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7660974 |
Snippet | With a view to the difficulty of the hybrid-driven underwater glider (HUG) hydrodynamic parameter identification, a method based on Differential Evolution (DE)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 338 |
SubjectTerms | Adaptation models Analytical models differential evolution algorithm Heuristic algorithms hybrid-driven underwater gliders hydrodynamic parameter Hydrodynamics Parameter estimation parameter identification Simulation Unmanned underwater vehicles |
Title | Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm |
URI | https://ieeexplore.ieee.org/document/9525589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidPXi0pd1ul-6RGAiaaDhIwo3s7myBiNQ0BaO_3tm2YDQevDXtNG1mtp157XszhNyEQmmVmNgTMWITDqH1JCjEPImNFNYjXFYE2ScxmvCHaTxtkNu9FsZaW5LPrO82y3_5kJmN-1TWlTEWwIlskiYCt0qrVavhwkB2-_eDfozVSICoj4V-mf1-zEwpU8bwkDzuLlYxRV78TaF98_mrD-N_7-aIdL7FeXS8TzvHpGHXbWLHyrGs0El0CTUBqPQ5zVK6-HCyLA9y92ajTjWWvytnOl85ER51mQwo2u6mpeBTv6J2W69KqlbzLF8Wi9cOmQwHz3cjr56g4C0ROBSeloYFEowRWvIwsDZOMSPrCCNgeSo5SwHxguQIOiI8ACwNJbj2OAChgYRFJ6S1ztb2lFA8mSuRSjTWXJhEGt7DVSggZr1EAzsjbeei2VvVJGNWe-f8790X5MAFqWIOXpJWkW_sFWb3Ql-XYf0CveCotQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjLe12t3SPxEBAgXCAhBvZrwIRqWmKRn-9s23BaDx4a9pp2sxsO_Pa92YQuvNDIUWkmBMywCZU-8bhWgDmiUwgoB6hvCDIDsPuhD5O2bSC7ndaGGNMTj4zrt3M_-XrRG3sp7IGZ1AAR3wP7TMrxi3UWqUezvd4o9VrtxjUIx7gPuK7ef77MTUlTxqdIzTYXq7gijy7m0y66vNXJ8b_3s8xqn_L8_Bol3hOUMWsa8iMhOVZgZvwUpcUoNzrOInx4sMKsxyd2ncbtrqx9F1Y0_nKyvCwzWUag-12Xgo89yts3sp1icVqnqTLbPFSR5NOe_zQdcoZCs4SoEPmSK6Ix7VSoeTU94xhMeRkGUAMDI05JbEGxMApwI4ADmgS-1zbBjla-0pHJDhF1XWyNmcIw8lUhDEHY0lDFXFFm7AOQ81IM5KanKOaddHstWiTMSu9c_H37lt00B0P-rN-b_h0iQ5twAoe4RWqZunGXEOuz-RNHuIvtK6r_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Parameter+identification+of+hybrid-driven+underwater+glider+based+on+differential+evolution+algorithm&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Hua&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Jian&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=338&rft.epage=342&rft_id=info:doi/10.1109%2FAIEA53260.2021.00078&rft.externalDocID=9525589 |