Heart Disease Prediction using Clustered Particle Swarm Optimization Techniques
Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisf...
Saved in:
Published in | 2022 IEEE 6th Conference on Information and Communication Technology (CICT) pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.11.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CICT56698.2022.9997925 |
Cover
Abstract | Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisfactory result because it is highly depend on the available data. We proposed one novel Clustered Particle Swarm Optimization Techniques (C-PSO) for heart disease prediction. In this process we clustered the data using segmentation techniques then each and every clustered data is considered as optimization classification problem using PSO. We consider the benchmark data set collected from UCI machine learning repository for experimentation. The experimentation result shows that the proposed model achieved the better prediction. |
---|---|
AbstractList | Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisfactory result because it is highly depend on the available data. We proposed one novel Clustered Particle Swarm Optimization Techniques (C-PSO) for heart disease prediction. In this process we clustered the data using segmentation techniques then each and every clustered data is considered as optimization classification problem using PSO. We consider the benchmark data set collected from UCI machine learning repository for experimentation. The experimentation result shows that the proposed model achieved the better prediction. |
Author | Vijaya, J. Rao, Mallikharjuna |
Author_xml | – sequence: 1 givenname: J. surname: Vijaya fullname: Vijaya, J. email: vijayacsedept@gmail.com organization: International Institute of Information Technology-Naya Raipur,Department of DSAI,Chhattisgarh,India – sequence: 2 givenname: Mallikharjuna surname: Rao fullname: Rao, Mallikharjuna email: rao.mkrao@gmail.com organization: International Institute of Information Technology-Naya Raipur,Department of DSAI,Chhattisgarh,India |
BookMark | eNotj11LwzAYhSO4C537BQPJH2hNmiZNLqV-bDDowHo90vSNvtBms2kR_fWWuasDh4fDc27JdTgGIOSes5RzZh7KbVlLpYxOM5ZlqTGmMJm8IitTaK6UzAvBM3lDqg3YYaRPGMFGoPsBWnQjHgOdIoYPWnZTHGFu6X7m0HVA377t0NPqNGKPv_bM1uA-A35NEO_IwtsuwuqSS_L-8lyXm2RXvW7Lx12CnOsxabjQLPcmL5pZjKvWeu_AO2OEbhuprXOzoQLmZcsaITx3oAslnfRtrnMtlmT9v4sAcDgN2Nvh53C5Kf4Ai_ROTA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CICT56698.2022.9997925 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665473125 1665473126 |
EndPage | 5 |
ExternalDocumentID | 9997925 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-b13804f947b97916daffcefc9938db58acc4736e0f5d0b33f1ce8765c5fd48483 |
IEDL.DBID | RIE |
IngestDate | Wed Sep 03 07:09:56 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-b13804f947b97916daffcefc9938db58acc4736e0f5d0b33f1ce8765c5fd48483 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9997925 |
PublicationCentury | 2000 |
PublicationDate | 2022-Nov.-18 |
PublicationDateYYYYMMDD | 2022-11-18 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 6th Conference on Information and Communication Technology (CICT) |
PublicationTitleAbbrev | CICT |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8591206 |
Snippet | Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Classification algorithms Clustering algorithms Heart Heart disease prediction Machine learning Optimization Particle swarm optimization Prediction algorithms Predictive models Segmentation Whales |
Title | Heart Disease Prediction using Clustered Particle Swarm Optimization Techniques |
URI | https://ieeexplore.ieee.org/document/9997925 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7d7SabZJPzaqlCbcEWeit5imhbqbsI_nqT3W1F8eAtJCEJkyEzycz3BYAr6c2M41pGWPubDkkMjgRWLmJGG0aEoogHvPPogQ1n5H5O5y1wvcPCWGur5DMbh2IVyzdrXYansr53ZjKBaRu0vZrVWK0G9IsS0c_v8ql3TkRI2MI4bjr_-DWlMhqDfTDaTlfnirzEZaFi_fmLifG_6zkAvW94HpzsDM8haNlVF4yHXmcLeFMHXHx7iMAEqcOQ2v4E89cycCJYAyeNtsDHD7lZwrE_NJYNGhNOt5Su7z0wG9xO82HU_JYQPftLQhEplPKEOEEy5VeFmJHOaeu0d0C4UZRLrUmWMps4ahKVpg5p649CqqkzhBOeHoHOar2yxwBKLHggvbFUCGL8SEK5zCBJM5MKxdgJ6AZhLN5qQoxFI4fTv6vPwF7YkADgQ_wcdIpNaS-8JS_UZbWFX6tVoZE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcoAToBax4wNH0maxE_scqFLoJpFKvVXxhhC0RSUREl-PnaQgEAdukWPZ1tjyG3vmPQNcZQZmNBWZ4wtz0sGu9B3mc-2EUsgQM048avnOw1GYTPHdjMwacP3FhVFKlclnqmM_y1i-XInCXpV1jTMTMZ9swbbBfUwqtlZN-_Vc1o37cWrcE2ZTtny_U1f_8W5KCRu9PRhuOqyyRZ47Rc474uOXFuN_R7QP7W-CHpp8Qc8BNNSyBePErNoc3VQhF_PfxmCs3ZFNbn9E8UthVRGURJN6vaCH92y9QGOzbSxqPiZKN6Kub22Y9m7TOHHq9xKcJ3NMyB3uBdTFmuGIm1F5ocy0FkoL44JQyQnNhMBRECpXE-nyINCeUGYzJIJoiSmmwSE0l6ulOgKU-Yxa2RtFGMPStMS4jqSXkUgGjIfhMbSsMeavlSTGvLbDyd_Fl7CTpMPBfNAf3Z_Crp0cS-fz6Bk083Whzg2u5_yinM5PTwik3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+6th+Conference+on+Information+and+Communication+Technology+%28CICT%29&rft.atitle=Heart+Disease+Prediction+using+Clustered+Particle+Swarm+Optimization+Techniques&rft.au=Vijaya%2C+J.&rft.au=Rao%2C+Mallikharjuna&rft.date=2022-11-18&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCICT56698.2022.9997925&rft.externalDocID=9997925 |