Heart Disease Prediction using Clustered Particle Swarm Optimization Techniques

Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisf...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 6th Conference on Information and Communication Technology (CICT) pp. 1 - 5
Main Authors Vijaya, J., Rao, Mallikharjuna
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.11.2022
Subjects
Online AccessGet full text
DOI10.1109/CICT56698.2022.9997925

Cover

Abstract Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisfactory result because it is highly depend on the available data. We proposed one novel Clustered Particle Swarm Optimization Techniques (C-PSO) for heart disease prediction. In this process we clustered the data using segmentation techniques then each and every clustered data is considered as optimization classification problem using PSO. We consider the benchmark data set collected from UCI machine learning repository for experimentation. The experimentation result shows that the proposed model achieved the better prediction.
AbstractList Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can reduce the life losses. Machine learning techniques are used to identify the heart diseases in advance but till now it not achieved the satisfactory result because it is highly depend on the available data. We proposed one novel Clustered Particle Swarm Optimization Techniques (C-PSO) for heart disease prediction. In this process we clustered the data using segmentation techniques then each and every clustered data is considered as optimization classification problem using PSO. We consider the benchmark data set collected from UCI machine learning repository for experimentation. The experimentation result shows that the proposed model achieved the better prediction.
Author Vijaya, J.
Rao, Mallikharjuna
Author_xml – sequence: 1
  givenname: J.
  surname: Vijaya
  fullname: Vijaya, J.
  email: vijayacsedept@gmail.com
  organization: International Institute of Information Technology-Naya Raipur,Department of DSAI,Chhattisgarh,India
– sequence: 2
  givenname: Mallikharjuna
  surname: Rao
  fullname: Rao, Mallikharjuna
  email: rao.mkrao@gmail.com
  organization: International Institute of Information Technology-Naya Raipur,Department of DSAI,Chhattisgarh,India
BookMark eNotj11LwzAYhSO4C537BQPJH2hNmiZNLqV-bDDowHo90vSNvtBms2kR_fWWuasDh4fDc27JdTgGIOSes5RzZh7KbVlLpYxOM5ZlqTGmMJm8IitTaK6UzAvBM3lDqg3YYaRPGMFGoPsBWnQjHgOdIoYPWnZTHGFu6X7m0HVA377t0NPqNGKPv_bM1uA-A35NEO_IwtsuwuqSS_L-8lyXm2RXvW7Lx12CnOsxabjQLPcmL5pZjKvWeu_AO2OEbhuprXOzoQLmZcsaITx3oAslnfRtrnMtlmT9v4sAcDgN2Nvh53C5Kf4Ai_ROTA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICT56698.2022.9997925
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665473125
1665473126
EndPage 5
ExternalDocumentID 9997925
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-b13804f947b97916daffcefc9938db58acc4736e0f5d0b33f1ce8765c5fd48483
IEDL.DBID RIE
IngestDate Wed Sep 03 07:09:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-b13804f947b97916daffcefc9938db58acc4736e0f5d0b33f1ce8765c5fd48483
PageCount 5
ParticipantIDs ieee_primary_9997925
PublicationCentury 2000
PublicationDate 2022-Nov.-18
PublicationDateYYYYMMDD 2022-11-18
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2022 IEEE 6th Conference on Information and Communication Technology (CICT)
PublicationTitleAbbrev CICT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8591206
Snippet Heart Disease prediction is one of the important research areas in Health care Management System (HMS). Predicting heart diseases in advance then only we can...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
Clustering algorithms
Heart
Heart disease prediction
Machine learning
Optimization
Particle swarm optimization
Prediction algorithms
Predictive models
Segmentation
Whales
Title Heart Disease Prediction using Clustered Particle Swarm Optimization Techniques
URI https://ieeexplore.ieee.org/document/9997925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7d7SabZJPzaqlCbcEWeit5imhbqbsI_nqT3W1F8eAtJCEJkyEzycz3BYAr6c2M41pGWPubDkkMjgRWLmJGG0aEoogHvPPogQ1n5H5O5y1wvcPCWGur5DMbh2IVyzdrXYansr53ZjKBaRu0vZrVWK0G9IsS0c_v8ql3TkRI2MI4bjr_-DWlMhqDfTDaTlfnirzEZaFi_fmLifG_6zkAvW94HpzsDM8haNlVF4yHXmcLeFMHXHx7iMAEqcOQ2v4E89cycCJYAyeNtsDHD7lZwrE_NJYNGhNOt5Su7z0wG9xO82HU_JYQPftLQhEplPKEOEEy5VeFmJHOaeu0d0C4UZRLrUmWMps4ahKVpg5p649CqqkzhBOeHoHOar2yxwBKLHggvbFUCGL8SEK5zCBJM5MKxdgJ6AZhLN5qQoxFI4fTv6vPwF7YkADgQ_wcdIpNaS-8JS_UZbWFX6tVoZE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcoAToBax4wNH0maxE_scqFLoJpFKvVXxhhC0RSUREl-PnaQgEAdukWPZ1tjyG3vmPQNcZQZmNBWZ4wtz0sGu9B3mc-2EUsgQM048avnOw1GYTPHdjMwacP3FhVFKlclnqmM_y1i-XInCXpV1jTMTMZ9swbbBfUwqtlZN-_Vc1o37cWrcE2ZTtny_U1f_8W5KCRu9PRhuOqyyRZ47Rc474uOXFuN_R7QP7W-CHpp8Qc8BNNSyBePErNoc3VQhF_PfxmCs3ZFNbn9E8UthVRGURJN6vaCH92y9QGOzbSxqPiZKN6Kub22Y9m7TOHHq9xKcJ3NMyB3uBdTFmuGIm1F5ocy0FkoL44JQyQnNhMBRECpXE-nyINCeUGYzJIJoiSmmwSE0l6ulOgKU-Yxa2RtFGMPStMS4jqSXkUgGjIfhMbSsMeavlSTGvLbDyd_Fl7CTpMPBfNAf3Z_Crp0cS-fz6Bk083Whzg2u5_yinM5PTwik3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+6th+Conference+on+Information+and+Communication+Technology+%28CICT%29&rft.atitle=Heart+Disease+Prediction+using+Clustered+Particle+Swarm+Optimization+Techniques&rft.au=Vijaya%2C+J.&rft.au=Rao%2C+Mallikharjuna&rft.date=2022-11-18&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCICT56698.2022.9997925&rft.externalDocID=9997925