Study of Text Clustering in Semantic Web

Clustering is a Widely used information acquisition method. In order to solve the traditional text clustering Which is impossible to fully exploit the semantic information of text resources and the high dimensional and sparseness of similarity matrix, this paper proposes a text clustering method bas...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE) pp. 1287 - 1293
Main Authors Wang, Liuyang, Yu, Yangxin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text
DOI10.1109/ISKE47853.2019.9170450

Cover

Loading…
Abstract Clustering is a Widely used information acquisition method. In order to solve the traditional text clustering Which is impossible to fully exploit the semantic information of text resources and the high dimensional and sparseness of similarity matrix, this paper proposes a text clustering method based on semantic similarity in semantic Web so as to further improve the quality of text clustering. By calculating the semantic similarity of Words so as to obtain the text semantic similarity matrix, spectral clustering is carried out according to the text semantic similarity matrix (SS-SC). The proposed method in this paper takes into account the semantic relations between Words, fully mines the potential information of the subject text, improves the quality of the clustering, and provides a new method for text clustering and recommendation. This paper verify the effect of the improved Weight calculation method on improving the clustering effectiveness. Thinking of the text resources of Google text corpus as data source, the traditional clustering K-Means algorithm, TCUSS (Text ClUstering based on Semantic Similarity) algorithm and the SS-SC algorithm are respectively tested. The results show that the precision value is higher than that of the traditional clustering algorithm.
AbstractList Clustering is a Widely used information acquisition method. In order to solve the traditional text clustering Which is impossible to fully exploit the semantic information of text resources and the high dimensional and sparseness of similarity matrix, this paper proposes a text clustering method based on semantic similarity in semantic Web so as to further improve the quality of text clustering. By calculating the semantic similarity of Words so as to obtain the text semantic similarity matrix, spectral clustering is carried out according to the text semantic similarity matrix (SS-SC). The proposed method in this paper takes into account the semantic relations between Words, fully mines the potential information of the subject text, improves the quality of the clustering, and provides a new method for text clustering and recommendation. This paper verify the effect of the improved Weight calculation method on improving the clustering effectiveness. Thinking of the text resources of Google text corpus as data source, the traditional clustering K-Means algorithm, TCUSS (Text ClUstering based on Semantic Similarity) algorithm and the SS-SC algorithm are respectively tested. The results show that the precision value is higher than that of the traditional clustering algorithm.
Author Wang, Liuyang
Yu, Yangxin
Author_xml – sequence: 1
  givenname: Liuyang
  surname: Wang
  fullname: Wang, Liuyang
  organization: Huaiyin Institute of Technology,Faculty of Computer & Software Engineering,Huai'an,China
– sequence: 2
  givenname: Yangxin
  surname: Yu
  fullname: Yu, Yangxin
  organization: Huaiyin Institute of Technology,Faculty of Computer & Software Engineering,Huai'an,China
BookMark eNotzs1KAzEUQOEIutDaJxAkSzcz5iaZ_CxlqLZYcDEVl-UmuZFAO5VpCvbtXdjV2X2cO3Y9HkZi7BFECyD882p4X2jrOtVKAb71YIXuxBWbe-vASgdSaWdu2dNQT-nMD5lv6Lfyfnc6VprK-M3LyAfa41hL5F8U7tlNxt2R5pfO2OfrYtMvm_XH26p_WTcFwNUGU4cpB6kN-uhySFGBDTYZrxM6SllFyCLKDjFBMkjGKKUNSCMzBbBqxh7-3UJE25-p7HE6by__6g9_ej9n
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISKE47853.2019.9170450
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728123486
1728123488
EndPage 1293
ExternalDocumentID 9170450
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-ad5adfb246a9c8fbdc317b7d694da8edf3c1f0c25aad1d6ae6633461262feb173
IEDL.DBID RIE
IngestDate Wed Aug 27 07:39:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-ad5adfb246a9c8fbdc317b7d694da8edf3c1f0c25aad1d6ae6633461262feb173
PageCount 7
ParticipantIDs ieee_primary_9170450
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)
PublicationTitleAbbrev ISKE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7061678
Snippet Clustering is a Widely used information acquisition method. In order to solve the traditional text clustering Which is impossible to fully exploit the semantic...
SourceID ieee
SourceType Publisher
StartPage 1287
SubjectTerms Clustering algorithms
Clustering methods
Eigenvalues and eigenfunctions
Feature extraction
Intelligent systems
Knowledge engineering
semantic similarity
Semantic Web
Semantics
Soft sensors
Sparse matrices
spectral clustering
text clustering
Title Study of Text Clustering in Semantic Web
URI https://ieeexplore.ieee.org/document/9170450
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ08qm_hNDh482K5t0o-cx8ZUJsI23G3k4w0UtRVpD_rrfdPWieLBW0gamqSQ53ma93lDyCVkAeiMM49ZgwIFMuNJCcKLsQODIBFR6AzO8_tktuK363jdI9dbLwwANMFn4Ltic5ZvSl27X2UjlBbIQFCg76Bwa71anek3DMToZnE34SnCjwvYEn738I9bUxrQmO6R-dfr2liRJ7-ulK8_fmVi_O949snw255HH7bAc0B6UAzIlYsIfKelpUvcb-n4uXYpELCd5gVdwAuuYK7pI6ghWU0ny_HM665B8HJk_5UnTSyNVRFPpNCZVUYj5qvUJIIbmYGxTIc20FEspQlNIgFJBOPIXJLI4k6cskPSL8oCjghFehXhgFMwqUGlkkoUL4rJWDOBOoTrYzJws9y8tpkuNt0ET_6uPiW7bqVbZ94Z6VdvNZwjRFfqovk2n8M1kjE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsAEqEW88cDAQNIkdh6eq1YtfQiprehWOfa1VEFThJIBvp7rJBSBGNgsO1ZsR_I5J77nmpBbSDxQCWcOMxoFCiTakRKEE2IHBl4kAt8anCfTaLDgD8tw2SD3Oy8MAJTBZ-DaYnmWr7eqsL_KOigtkIGgQN9D3A_9yq1V2359T3SGs1GPxwhANmRLuPXjP-5NKWGjf0gmXy-sokWe3SJPXfXxKxfjf0d0RNrfBj36uIOeY9KArEXubEzgO90aOscdl3ZfCpsEAdvpOqMz2OAarhV9grRNFv3evDtw6osQnDXy_9yROpTapAGPpFCJSbVC1E9jHQmuZQLaMOUbTwWhlNrXkQSkEYwjd4kCg3txzE5IM9tmcEooEqwABxyDjjVqlViifEmZDBUTqES4OiMtO8vVa5XrYlVP8Pzv6huyP5hPxqvxcDq6IAd21Suf3iVp5m8FXCFg5-l1-Z0-AZlNlXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+14th+International+Conference+on+Intelligent+Systems+and+Knowledge+Engineering+%28ISKE%29&rft.atitle=Study+of+Text+Clustering+in+Semantic+Web&rft.au=Wang%2C+Liuyang&rft.au=Yu%2C+Yangxin&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=1287&rft.epage=1293&rft_id=info:doi/10.1109%2FISKE47853.2019.9170450&rft.externalDocID=9170450