A Global Path Planning Algorithm for Robots Using Reinforcement Learning

Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) pp. 1693 - 1698
Main Authors Gao, Penggang, Liu, Zihan, Wu, Zongkai, Wang, Donglin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2019
Subjects
Online AccessGet full text
DOI10.1109/ROBIO49542.2019.8961753

Cover

Abstract Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm.
AbstractList Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm.
Author Wu, Zongkai
Liu, Zihan
Gao, Penggang
Wang, Donglin
Author_xml – sequence: 1
  givenname: Penggang
  surname: Gao
  fullname: Gao, Penggang
  organization: Westlake University,Department of Engineering,Hangzhou,China
– sequence: 2
  givenname: Zihan
  surname: Liu
  fullname: Liu, Zihan
  organization: Westlake University,Department of Engineering,Hangzhou,China
– sequence: 3
  givenname: Zongkai
  surname: Wu
  fullname: Wu, Zongkai
  organization: Westlake University,Department of Engineering,Hangzhou,China
– sequence: 4
  givenname: Donglin
  surname: Wang
  fullname: Wang, Donglin
  organization: Westlake University,Department of Engineering,Hangzhou,China
BookMark eNotj9FKwzAYhSPohc49gRfmBVrzJ2maXNah26DQUeb1SNK_W6BNpO2Nb6_DXR04H-eD80TuY4pIyCuwHICZt7Z53zfSFJLnnIHJtVFQFuKOrE2poeQalOBQPJJdRbdDcnagB7tc6GGwMYZ4ptVwTlNYLiPt00Tb5NIy06_5iloM8a_0OGJcaI12ui6eyUNvhxnXt1yR4-fHcbPL6ma731R1FgD0klkJXqgSue7BSmSKo3FKeAbSaeG1FIY7wXnnlels57CHgnUGpDdGulKsyMu_NiDi6XsKo51-Trd74hc23UoC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ROBIO49542.2019.8961753
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728163215
1728163218
EndPage 1698
ExternalDocumentID 8961753
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-a41c367e28f1a4e062e9b63c014b83c84392b322dc69dadbef150d914c994b73
IEDL.DBID RIE
IngestDate Wed Aug 27 07:43:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-a41c367e28f1a4e062e9b63c014b83c84392b322dc69dadbef150d914c994b73
PageCount 6
ParticipantIDs ieee_primary_8961753
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
PublicationTitleAbbrev ROBIO
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.887252
Snippet Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and...
SourceID ieee
SourceType Publisher
StartPage 1693
SubjectTerms Autonomous robots
Biomimetics
Collision avoidance
Global path planning
Mobile robots
Navigation
Path planning
Planning
Q-learning
Random Sampling
Reinforcement Learning
Title A Global Path Planning Algorithm for Robots Using Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8961753
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2Qkyc1YPxODx5dYHdrd3tEI0EThBBMuJFOd4pEZQ0uF3-90-6C0Xjwtmk26dc086Z984axy0R3hKVYNiDzsYHASAZpbEQgbWghVUKCdS-6g0fZfxIP0-tpjV1tc2EQ0ZPPsOU-_Vt-lpu1uyprp0o6YckdtkNmVuZqVZStsKPa4-HN_ZDwvnD5VSGZQPn3j7Ip3mv09thg019JFnlprQtomc9fUoz_HdA-a37n5_HR1vMcsBouG6zf5aWAPx8RquObakS8-zrPV4vi-Y0TPuXjHPLig3umAB-j1001_oqQV1Kr8yab9O4mt_2gqpMQLCg8KAItQhPLBKPUhlpgR0aoQMaGoh-ghU8Jc0RABzczUmU6A7SEAjMVCqOUgCQ-ZPVlvsQjxq1IbQaKggjQAsBJ6UcaFeooAVcL5pg13CLM3ksljFk1_5O_m0_ZrtuIkvxxxurFao3n5MILuPB79wVjCZ0N
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_DoAruU7vaIRrMorxBMuJGdbotEZQ0uF3-9090Fo_HgrWma9J35pv3mG4ArP2pwQ76sQ8fHOFx7wgmaijvCuAYDyQUa-6Pb64vwiT9MWpMSXG9iYbTWGflM12wx-8uPE7WyT2X1QAorLLkF22T3eSuP1ipIW25D1keDm86AED-3EVYuHYK8_Y_EKZnduN-D3rrHnC7yUlulWFOfv8QY_zukfah-R-ix4cb2HEBJLyoQtlku4c-GhOvYOh8Ra7_OkuU8fX5jhFDZKMEk_WAZV4CNdKacqrJHQlaIrc6qML6_G9-GTpEpwZmTg5A6EXdVU_jaC4wbcd0QnpYomor8H6SlDwh1eEhXN1ZCxlGM2hAOjKXLlZQc_eYhlBfJQh8BMzwwMUpyIzDiiFZM34u01JHno80GcwwVuwjT91wLY1rM_-Tv6kvYCce97rTb6T-ewq7dlJwKcgbldLnS52TQU7zI9vELzOSgWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Conference+on+Robotics+and+Biomimetics+%28ROBIO%29&rft.atitle=A+Global+Path+Planning+Algorithm+for+Robots+Using+Reinforcement+Learning&rft.au=Gao%2C+Penggang&rft.au=Liu%2C+Zihan&rft.au=Wu%2C+Zongkai&rft.au=Wang%2C+Donglin&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1693&rft.epage=1698&rft_id=info:doi/10.1109%2FROBIO49542.2019.8961753&rft.externalDocID=8961753