A Global Path Planning Algorithm for Robots Using Reinforcement Learning
Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with...
Saved in:
Published in | 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) pp. 1693 - 1698 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ROBIO49542.2019.8961753 |
Cover
Abstract | Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm. |
---|---|
AbstractList | Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm. |
Author | Wu, Zongkai Liu, Zihan Gao, Penggang Wang, Donglin |
Author_xml | – sequence: 1 givenname: Penggang surname: Gao fullname: Gao, Penggang organization: Westlake University,Department of Engineering,Hangzhou,China – sequence: 2 givenname: Zihan surname: Liu fullname: Liu, Zihan organization: Westlake University,Department of Engineering,Hangzhou,China – sequence: 3 givenname: Zongkai surname: Wu fullname: Wu, Zongkai organization: Westlake University,Department of Engineering,Hangzhou,China – sequence: 4 givenname: Donglin surname: Wang fullname: Wang, Donglin organization: Westlake University,Department of Engineering,Hangzhou,China |
BookMark | eNotj9FKwzAYhSPohc49gRfmBVrzJ2maXNah26DQUeb1SNK_W6BNpO2Nb6_DXR04H-eD80TuY4pIyCuwHICZt7Z53zfSFJLnnIHJtVFQFuKOrE2poeQalOBQPJJdRbdDcnagB7tc6GGwMYZ4ptVwTlNYLiPt00Tb5NIy06_5iloM8a_0OGJcaI12ui6eyUNvhxnXt1yR4-fHcbPL6ma731R1FgD0klkJXqgSue7BSmSKo3FKeAbSaeG1FIY7wXnnlels57CHgnUGpDdGulKsyMu_NiDi6XsKo51-Trd74hc23UoC |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ROBIO49542.2019.8961753 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728163215 1728163218 |
EndPage | 1698 |
ExternalDocumentID | 8961753 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-a41c367e28f1a4e062e9b63c014b83c84392b322dc69dadbef150d914c994b73 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 07:43:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-a41c367e28f1a4e062e9b63c014b83c84392b322dc69dadbef150d914c994b73 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8961753 |
PublicationCentury | 2000 |
PublicationDate | 2019-Dec. |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) |
PublicationTitleAbbrev | ROBIO |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.887252 |
Snippet | Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1693 |
SubjectTerms | Autonomous robots Biomimetics Collision avoidance Global path planning Mobile robots Navigation Path planning Planning Q-learning Random Sampling Reinforcement Learning |
Title | A Global Path Planning Algorithm for Robots Using Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/8961753 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2Qkyc1YPxODx5dYHdrd3tEI0EThBBMuJFOd4pEZQ0uF3-90-6C0Xjwtmk26dc086Z984axy0R3hKVYNiDzsYHASAZpbEQgbWghVUKCdS-6g0fZfxIP0-tpjV1tc2EQ0ZPPsOU-_Vt-lpu1uyprp0o6YckdtkNmVuZqVZStsKPa4-HN_ZDwvnD5VSGZQPn3j7Ip3mv09thg019JFnlprQtomc9fUoz_HdA-a37n5_HR1vMcsBouG6zf5aWAPx8RquObakS8-zrPV4vi-Y0TPuXjHPLig3umAB-j1001_oqQV1Kr8yab9O4mt_2gqpMQLCg8KAItQhPLBKPUhlpgR0aoQMaGoh-ghU8Jc0RABzczUmU6A7SEAjMVCqOUgCQ-ZPVlvsQjxq1IbQaKggjQAsBJ6UcaFeooAVcL5pg13CLM3ksljFk1_5O_m0_ZrtuIkvxxxurFao3n5MILuPB79wVjCZ0N |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_DoAruU7vaIRrMorxBMuJGdbotEZQ0uF3-9090Fo_HgrWma9J35pv3mG4ArP2pwQ76sQ8fHOFx7wgmaijvCuAYDyQUa-6Pb64vwiT9MWpMSXG9iYbTWGflM12wx-8uPE7WyT2X1QAorLLkF22T3eSuP1ipIW25D1keDm86AED-3EVYuHYK8_Y_EKZnduN-D3rrHnC7yUlulWFOfv8QY_zukfah-R-ix4cb2HEBJLyoQtlku4c-GhOvYOh8Ra7_OkuU8fX5jhFDZKMEk_WAZV4CNdKacqrJHQlaIrc6qML6_G9-GTpEpwZmTg5A6EXdVU_jaC4wbcd0QnpYomor8H6SlDwh1eEhXN1ZCxlGM2hAOjKXLlZQc_eYhlBfJQh8BMzwwMUpyIzDiiFZM34u01JHno80GcwwVuwjT91wLY1rM_-Tv6kvYCce97rTb6T-ewq7dlJwKcgbldLnS52TQU7zI9vELzOSgWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Conference+on+Robotics+and+Biomimetics+%28ROBIO%29&rft.atitle=A+Global+Path+Planning+Algorithm+for+Robots+Using+Reinforcement+Learning&rft.au=Gao%2C+Penggang&rft.au=Liu%2C+Zihan&rft.au=Wu%2C+Zongkai&rft.au=Wang%2C+Donglin&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1693&rft.epage=1698&rft_id=info:doi/10.1109%2FROBIO49542.2019.8961753&rft.externalDocID=8961753 |