Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm
Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of tra...
Saved in:
Published in | 2019 IEEE International Conference on Industrial Internet (ICII) pp. 411 - 416 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of traditional genetic algorithm, the performance of image threshold segmentation is constrained. We propose a 2-D maximum entropy threshold segmentation method based on the auxiliary individual oriented crossover genetic algorithm (AIOXGA) to improve the speed and success rate of image threshold segmentation. The introduction of the AIOX operator reduces the blindness of the genetic algorithm and improves the optimization efficiency. This method was compared with enumeration method, standard genetic algorithm and original oriented genetic algorithm(OGA) in image segmentation experiments. The results show that the performance of this method is better than that of traditional methods. |
---|---|
AbstractList | Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of traditional genetic algorithm, the performance of image threshold segmentation is constrained. We propose a 2-D maximum entropy threshold segmentation method based on the auxiliary individual oriented crossover genetic algorithm (AIOXGA) to improve the speed and success rate of image threshold segmentation. The introduction of the AIOX operator reduces the blindness of the genetic algorithm and improves the optimization efficiency. This method was compared with enumeration method, standard genetic algorithm and original oriented genetic algorithm(OGA) in image segmentation experiments. The results show that the performance of this method is better than that of traditional methods. |
Author | Li, Lanbo Fan, Qingwu Zhou, Xingqi Chen, Guanghuang |
Author_xml | – sequence: 1 givenname: Qingwu surname: Fan fullname: Fan, Qingwu organization: Beijing University of Technology – sequence: 2 givenname: Guanghuang surname: Chen fullname: Chen, Guanghuang organization: Beijing University of Technology – sequence: 3 givenname: Xingqi surname: Zhou fullname: Zhou, Xingqi organization: Beijing University of Technology – sequence: 4 givenname: Lanbo surname: Li fullname: Li, Lanbo organization: Beijing University of Technology |
BookMark | eNotjrFOwzAURY0EA5TODCz-gQbbSeznMURQLFXqQJkjx3lJLCUxctIK_p5IdLpHV0dX94HcTmFCQp44Szhn-sWUxiSCcZ0wxpS8IVutgCsBXGil4J5UZrQd0lMfce7D0NBP7EacFrv4MNFXO2NDVyjOP37wNv5SMzX-4puzHegx-tVchTKGeQ4XjHSPEy7e0WLoQvRLPz6Su9YOM26vuSFf72-n8mN3OO5NWRx2nnNYdpbVDkHkEiUIDg6VlK5WGpkDSNusRVAZR2AcFDZS8zoTVgLkUqdu7dINef7f9YhYfUc_rmcrzWTOMp3-AV-_UVA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICII.2019.00076 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728129778 172812977X |
EndPage | 416 |
ExternalDocumentID | 9065049 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-a0bce8256e68218ce766cb79e0c883f4fe8741e80187ed691b42a6885693c1873 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:05 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-a0bce8256e68218ce766cb79e0c883f4fe8741e80187ed691b42a6885693c1873 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9065049 |
PublicationCentury | 2000 |
PublicationDate | 2019-Nov. |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE International Conference on Industrial Internet (ICII) |
PublicationTitleAbbrev | ICII |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7623526 |
Snippet | Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 411 |
SubjectTerms | auxiliary individual oriented crossover Conferences genetic algorithms Image segmentation Internet maximum entropy |
Title | Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm |
URI | https://ieeexplore.ieee.org/document/9065049 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjw6GKx07RGJhJmgJkLCjbTbGy7KMLgl6l_ve9tEYzx4a96lTV_T7732fd9j7KJPOCo8z3GVAUf0VexY2es6sbRWSwGuKdr5TG7leCZu5v15jV1uuTAAUBSfQZuGxV9-tA5zeirraIonhK6zuq91ydWq1Hq6ru4EwyCgWi0SoHRJQ-RHu5QCLUa7bPI1T1kk8tTOM9sOP35JMP53IXus9c3L4_dbxNlnNUibbBGs8E7gU3TKK_0l8QdYripGUcqvEKUijoNB_pY8J2bzzoMtB4vfkcoxxpx8SGBJ1ZycdKjxMPHB83K9SbLHVYvNRtfT4dip2iY4CWYLmWNcGwImfhKkQgAPwZcytL4GN1TKi0UMCsMIUNSODyKpu1b0jFSqL7UXos07YI10ncIh476VwgrfYN4TCS_qGaUR8VTkx5ilGAVHrEmbs3gplTEW1b4c_20-YTvknpLJd8oa2SaHM4T0zJ4XvvwE71GjYg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwWBd1x6RSJgCmggJN9Jub7oIw-CWqH-9r9tEYzx4a3pp817T7732fd8j5MI1OMocx7KFAou5IrI0b7esiGstOQNb5e18hiPen7CbqTutkMs1FwYA8uIzaJhh_pcfLoPMPJU1pYknmNwgmxhXC16wtUq9npYtm37X9021lpGgtI2KyI-GKTle9HbI8GulokzkuZGluhF8_BJh_O9Wdkn9m5lH79eYs0cqkNTIzF_grUDH6JZX85tEH-BxUXKKEnqFOBVSHHSyt3geq9U79dcsLHpndI4x6qRdA5emnpMaJWo8TrQzf1yu4vRpUSeT3vW427fKxglWjPlCailbB4CpHwcuEMID8DgPtCfBDoRwIhaBwEAChGnIByGXLc3aigvhcukEOOfsk2qyTOCAUE9zppmn0Nwhc8K2EhIxT4RehHmKEnBIasY4s5dCG2NW2uXo7-lzstUfDwezgT-6PSbbxlUFr--EVNNVBqcI8Kk-y_36Cab_pq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Conference+on+Industrial+Internet+%28ICII%29&rft.atitle=Image+Threshold+Segmentation+Based+on+Auxiliary+Individual+Oriented+Crossover+Genetic+Algorithm&rft.au=Fan%2C+Qingwu&rft.au=Chen%2C+Guanghuang&rft.au=Zhou%2C+Xingqi&rft.au=Li%2C+Lanbo&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=411&rft.epage=416&rft_id=info:doi/10.1109%2FICII.2019.00076&rft.externalDocID=9065049 |