Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm

Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of tra...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE International Conference on Industrial Internet (ICII) pp. 411 - 416
Main Authors Fan, Qingwu, Chen, Guanghuang, Zhou, Xingqi, Li, Lanbo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of traditional genetic algorithm, the performance of image threshold segmentation is constrained. We propose a 2-D maximum entropy threshold segmentation method based on the auxiliary individual oriented crossover genetic algorithm (AIOXGA) to improve the speed and success rate of image threshold segmentation. The introduction of the AIOX operator reduces the blindness of the genetic algorithm and improves the optimization efficiency. This method was compared with enumeration method, standard genetic algorithm and original oriented genetic algorithm(OGA) in image segmentation experiments. The results show that the performance of this method is better than that of traditional methods.
AbstractList Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of traditional genetic algorithm, the performance of image threshold segmentation is constrained. We propose a 2-D maximum entropy threshold segmentation method based on the auxiliary individual oriented crossover genetic algorithm (AIOXGA) to improve the speed and success rate of image threshold segmentation. The introduction of the AIOX operator reduces the blindness of the genetic algorithm and improves the optimization efficiency. This method was compared with enumeration method, standard genetic algorithm and original oriented genetic algorithm(OGA) in image segmentation experiments. The results show that the performance of this method is better than that of traditional methods.
Author Li, Lanbo
Fan, Qingwu
Zhou, Xingqi
Chen, Guanghuang
Author_xml – sequence: 1
  givenname: Qingwu
  surname: Fan
  fullname: Fan, Qingwu
  organization: Beijing University of Technology
– sequence: 2
  givenname: Guanghuang
  surname: Chen
  fullname: Chen, Guanghuang
  organization: Beijing University of Technology
– sequence: 3
  givenname: Xingqi
  surname: Zhou
  fullname: Zhou, Xingqi
  organization: Beijing University of Technology
– sequence: 4
  givenname: Lanbo
  surname: Li
  fullname: Li, Lanbo
  organization: Beijing University of Technology
BookMark eNotjrFOwzAURY0EA5TODCz-gQbbSeznMURQLFXqQJkjx3lJLCUxctIK_p5IdLpHV0dX94HcTmFCQp44Szhn-sWUxiSCcZ0wxpS8IVutgCsBXGil4J5UZrQd0lMfce7D0NBP7EacFrv4MNFXO2NDVyjOP37wNv5SMzX-4puzHegx-tVchTKGeQ4XjHSPEy7e0WLoQvRLPz6Su9YOM26vuSFf72-n8mN3OO5NWRx2nnNYdpbVDkHkEiUIDg6VlK5WGpkDSNusRVAZR2AcFDZS8zoTVgLkUqdu7dINef7f9YhYfUc_rmcrzWTOMp3-AV-_UVA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICII.2019.00076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728129778
172812977X
EndPage 416
ExternalDocumentID 9065049
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-a0bce8256e68218ce766cb79e0c883f4fe8741e80187ed691b42a6885693c1873
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:05 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-a0bce8256e68218ce766cb79e0c883f4fe8741e80187ed691b42a6885693c1873
PageCount 6
ParticipantIDs ieee_primary_9065049
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 IEEE International Conference on Industrial Internet (ICII)
PublicationTitleAbbrev ICII
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7623526
Snippet Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold...
SourceID ieee
SourceType Publisher
StartPage 411
SubjectTerms auxiliary individual oriented crossover
Conferences
genetic algorithms
Image segmentation
Internet
maximum entropy
Title Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9065049
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjw6GKx07RGJhJmgJkLCjbTbGy7KMLgl6l_ve9tEYzx4a96lTV_T7732fd9j7KJPOCo8z3GVAUf0VexY2es6sbRWSwGuKdr5TG7leCZu5v15jV1uuTAAUBSfQZuGxV9-tA5zeirraIonhK6zuq91ydWq1Hq6ru4EwyCgWi0SoHRJQ-RHu5QCLUa7bPI1T1kk8tTOM9sOP35JMP53IXus9c3L4_dbxNlnNUibbBGs8E7gU3TKK_0l8QdYripGUcqvEKUijoNB_pY8J2bzzoMtB4vfkcoxxpx8SGBJ1ZycdKjxMPHB83K9SbLHVYvNRtfT4dip2iY4CWYLmWNcGwImfhKkQgAPwZcytL4GN1TKi0UMCsMIUNSODyKpu1b0jFSqL7UXos07YI10ncIh476VwgrfYN4TCS_qGaUR8VTkx5ilGAVHrEmbs3gplTEW1b4c_20-YTvknpLJd8oa2SaHM4T0zJ4XvvwE71GjYg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwWBd1x6RSJgCmggJN9Jub7oIw-CWqH-9r9tEYzx4a3pp817T7732fd8j5MI1OMocx7KFAou5IrI0b7esiGstOQNb5e18hiPen7CbqTutkMs1FwYA8uIzaJhh_pcfLoPMPJU1pYknmNwgmxhXC16wtUq9npYtm37X9021lpGgtI2KyI-GKTle9HbI8GulokzkuZGluhF8_BJh_O9Wdkn9m5lH79eYs0cqkNTIzF_grUDH6JZX85tEH-BxUXKKEnqFOBVSHHSyt3geq9U79dcsLHpndI4x6qRdA5emnpMaJWo8TrQzf1yu4vRpUSeT3vW427fKxglWjPlCailbB4CpHwcuEMID8DgPtCfBDoRwIhaBwEAChGnIByGXLc3aigvhcukEOOfsk2qyTOCAUE9zppmn0Nwhc8K2EhIxT4RehHmKEnBIasY4s5dCG2NW2uXo7-lzstUfDwezgT-6PSbbxlUFr--EVNNVBqcI8Kk-y_36Cab_pq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Conference+on+Industrial+Internet+%28ICII%29&rft.atitle=Image+Threshold+Segmentation+Based+on+Auxiliary+Individual+Oriented+Crossover+Genetic+Algorithm&rft.au=Fan%2C+Qingwu&rft.au=Chen%2C+Guanghuang&rft.au=Zhou%2C+Xingqi&rft.au=Li%2C+Lanbo&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=411&rft.epage=416&rft_id=info:doi/10.1109%2FICII.2019.00076&rft.externalDocID=9065049