EEG Functional Connectivity Predicts Continuous Fatigue Levels During Underload Task

We built a data-driven prediction model based on Time Series Neural Network regression model to explore the feasibility of utilizing functional connectivity (FC) to predict the continuous fatigue levels during underload task. When participants performed a 120-minute dull driving task, experimental d...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 322 - 327
Main Author Zhu, He-Xuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2021
Subjects
Online AccessGet full text
DOI10.1109/AIEA53260.2021.00075

Cover

Loading…
Abstract We built a data-driven prediction model based on Time Series Neural Network regression model to explore the feasibility of utilizing functional connectivity (FC) to predict the continuous fatigue levels during underload task. When participants performed a 120-minute dull driving task, experimental data was recorded. The EEG and eye closure data used in this paper are from SJTU Emotion EEG Dataset, SEED. Unlike other researches, We proposed a functional brain networks method based on Phase Lag Index (PLI) to analyze EEG effectively and incorporate the temporal dependency of PERCLOS into model training. The functional connectivity corresponding to different fatigue degrees during whole experiment were analyzed. Meanwhile, taking the clustering coefficient (C) values, degree(D) and characteristic path length (L) values as input respectively while PERCLOS as output. The results suggest that brain network analysis approaches combined with Neural Network are effective to predicts individual mental fatigue during long time driving and can improve the performance of fatigue detection with a higher prediction correlation coefficient of 0.99 and a lower RMSE value of 0.01 on average.
AbstractList We built a data-driven prediction model based on Time Series Neural Network regression model to explore the feasibility of utilizing functional connectivity (FC) to predict the continuous fatigue levels during underload task. When participants performed a 120-minute dull driving task, experimental data was recorded. The EEG and eye closure data used in this paper are from SJTU Emotion EEG Dataset, SEED. Unlike other researches, We proposed a functional brain networks method based on Phase Lag Index (PLI) to analyze EEG effectively and incorporate the temporal dependency of PERCLOS into model training. The functional connectivity corresponding to different fatigue degrees during whole experiment were analyzed. Meanwhile, taking the clustering coefficient (C) values, degree(D) and characteristic path length (L) values as input respectively while PERCLOS as output. The results suggest that brain network analysis approaches combined with Neural Network are effective to predicts individual mental fatigue during long time driving and can improve the performance of fatigue detection with a higher prediction correlation coefficient of 0.99 and a lower RMSE value of 0.01 on average.
Author Zhu, He-Xuan
Author_xml – sequence: 1
  givenname: He-Xuan
  surname: Zhu
  fullname: Zhu, He-Xuan
  email: zhuhexuan@buaa.edu.cn
  organization: Beihang University,School of Reliability and Systems Engineering, Science and Technology on Reliability and Environment Engineering Laboratory,Beijing,China,100191
BookMark eNotjM1KxDAYRSPoQsd5Al3kBVrzn2ZZajsOFHTRWQ9J-nUI1lTadGDe3hFdXc45cB_QbZwiIPRMSU4pMS_lvi4lZ4rkjDCaE0K0vEFbowuqlBTXIot71NX1Djdr9ClM0Y64mmKEK5xDuuCPGfrg0_JrU4jrtC64sSmcVsAtnGFc8Os6h3jCh9jDPE62x51dPh_R3WDHBbb_u0GHpu6qt6x93-2rss0CpUXKjBHOceedVYJLGMBqxoGCc1KTgXuvwYqCOM-p0J5aKylXAxOkkKQYnOEb9PT3GwDg-D2HLztfjkYyqYjmP2mmTuE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIEA53260.2021.00075
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432658
1665432659
EndPage 327
ExternalDocumentID 9525607
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-994bb3bcba6435efea723e1ebb570f3cc7ea480bc3147c1aa5136f2408508fb93
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:01 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-994bb3bcba6435efea723e1ebb570f3cc7ea480bc3147c1aa5136f2408508fb93
PageCount 6
ParticipantIDs ieee_primary_9525607
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
PublicationTitleAbbrev AIEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7590872
Snippet We built a data-driven prediction model based on Time Series Neural Network regression model to explore the feasibility of utilizing functional connectivity...
SourceID ieee
SourceType Publisher
StartPage 322
SubjectTerms Correlation coefficient
EEG
Estimation
Fatigue
Functional connectivity
Neural Network
Neural networks
Predictive models
Time series analysis
Training
Title EEG Functional Connectivity Predicts Continuous Fatigue Levels During Underload Task
URI https://ieeexplore.ieee.org/document/9525607
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwMhECVtT57UtMbvcPDobqFAdzk2ums11nhok94aYAfT1GyN3b346wW21mg8eCOEBDJzeDx4bwahK8tUkSjgEQwJj7iwLEodskSKAVWi0FaFCnyTp-F4xh_mYt5C1zsvDAAE8RnEfhj-8ou1qf1TWV8KD9BJG7UdcWu8Wls3HCWyP7rPRsLdRohjfQMaBzT80TMlQEa-jyZfmzVKkVVcVzo2H7_qMP73NAeo923Ow8872DlELSi7aJpldzh3GNU87eGgXzFNZwi32v_GVBs_Wy3L2pF9nLuMvNSAH71oaINvg1sRhy5Ir2tV4KnarHpolmfTm3G0bZgQLR1PqCIpudZMG63cPUOABZUMXMxBa5EQy4xJQPGUaMMoTwxVSlA2tKHIGUmtluwIdcp1CccIU2kJ1WkChQUuTSGtINzIwlMeq4fkBHV9RBZvTU2MxTYYp39Pn6E9n5NGKHiOOtV7DRcOzCt9GbL4Cb92omo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0QD3pSA8Zve_DoQsu2u9sj0UVQIB4g4Uba7tQQzGJk9-Kvt-0iRuPBWzNp0mbm8Dqd92YQujGhzGIJLICIsIBxEwaJRZZAhkAlz5SRvgPfaBz1p-xxxmc1dLvVwgCAJ59Byy19LT9b6dJ9lbUFdwAd76Bdi_ucVmqtjR6OEtHuDtIut-8RYvO-Dm15PPwxNcWDRu8Ajb6Oq7giy1ZZqJb--NWJ8b_3OUTNb3keft4CzxGqQd5AkzR9wD2LUtXnHvYMFl3NhrC7XT2mWDtrschLm-7jno3JSwl46GhDa3zv9YrYz0F6XckMT-R62UTTXjq56webkQnBwmYKRSAEUypUWkn70uBgQMYd63VQisfEhFrHIFlClA4pizWVktMwMr7NGUmMEuExquerHE4QpsIQqpIYMgNM6EwYTpgWmUt6jIrIKWo4j8zfqq4Y840zzv42X6O9_mQ0nA8H46dztO_iU9EGL1C9eC_h0kJ7oa58RD8BZ5ulsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=EEG+Functional+Connectivity+Predicts+Continuous+Fatigue+Levels+During+Underload+Task&rft.au=Zhu%2C+He-Xuan&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=322&rft.epage=327&rft_id=info:doi/10.1109%2FAIEA53260.2021.00075&rft.externalDocID=9525607