Gesture modeling and recognition using finite state machines

We propose a state-based approach to gesture learning and recognition. Using spatial clustering and temporal alignment, each gesture is defined to be an ordered sequence of states in spatial-temporal space. The 2D image positions of the centers of the head and both hands of the user are used as feat...

Full description

Saved in:
Bibliographic Details
Published in4th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2000) pp. 410 - 415
Main Authors Pengyu Hong, Turk, M., Huang, T.S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2000
Subjects
Online AccessGet full text
ISBN0769505805
9780769505800
DOI10.1109/AFGR.2000.840667

Cover

Abstract We propose a state-based approach to gesture learning and recognition. Using spatial clustering and temporal alignment, each gesture is defined to be an ordered sequence of states in spatial-temporal space. The 2D image positions of the centers of the head and both hands of the user are used as features; these are located by a color-based tracking method. From training data of a given gesture, we first learn the spatial information and then group the data into segments that are automatically aligned temporally. The temporal information is further integrated to build a finite state machine (FSM) recognizer. Each gesture has a FSM corresponding to it. The computational efficiency of the FSM recognizers allows us to achieve real-time on-line performance. We apply this technique to build an experimental system that plays a game of "Simon Says" with the user.
AbstractList We propose a state-based approach to gesture learning and recognition. Using spatial clustering and temporal alignment, each gesture is defined to be an ordered sequence of states in spatial-temporal space. The 2D image positions of the centers of the head and both hands of the user are used as features; these are located by a color-based tracking method. From training data of a given gesture, we first learn the spatial information and then group the data into segments that are automatically aligned temporally. The temporal information is further integrated to build a finite state machine (FSM) recognizer. Each gesture has a FSM corresponding to it. The computational efficiency of the FSM recognizers allows us to achieve real-time on-line performance. We apply this technique to build an experimental system that plays a game of "Simon Says" with the user.
Author Huang, T.S.
Pengyu Hong
Turk, M.
Author_xml – sequence: 1
  surname: Pengyu Hong
  fullname: Pengyu Hong
  organization: Beckman Inst., Illinois Univ., Urbana, IL, USA
– sequence: 2
  givenname: M.
  surname: Turk
  fullname: Turk, M.
– sequence: 3
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1008246$$DView record in Pascal Francis
BookMark eNo9UM1LwzAcDaigm7uLpx68tv6SNF_gZQxXhYEgeh5J-uuMtOlouoP_vR0VL-_xPniHtyCXsY9IyB2FglIwj-tt9V4wACh0CVKqC7IAJY0AoUFck1VK31MI3HBN4YY8VZjG04BZ19fYhnjIbKyzAX1_iGEMfcxO6ew2YZKYpdFO2Fn_FSKmW3LV2Dbh6o-X5HP7_LF5yXdv1etmvcsDpXrMDVNS-NJRppwDZxzX6LXiwphSM1oLBObAaO1MSZWijE8-sMYKaKSAmi_Jw7x7tMnbthls9CHtj0Po7PCzpwCalXKq3c-1gIj_6XwD_wV2G1LN
ContentType Conference Proceeding
Copyright 2001 INIST-CNRS
Copyright_xml – notice: 2001 INIST-CNRS
DBID 6IE
6IL
CBEJK
RIE
RIL
IQODW
DOI 10.1109/AFGR.2000.840667
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Pascal-Francis
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EndPage 415
ExternalDocumentID 1008246
840667
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIB
RIC
RIE
RIL
IQODW
ID FETCH-LOGICAL-i118t-92765c4b127bb0b9b38ec8735994821d5e02b0988b9417712394802fa50f650d3
IEDL.DBID RIE
ISBN 0769505805
9780769505800
IngestDate Thu Aug 18 19:24:16 EDT 2022
Tue Aug 26 17:51:54 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Performance evaluation
Computer vision
Alignment
Abstract machine
Tracking
Finite state machine
Learning (artificial intelligence)
Classification
Gesture
Tracking(movable target)
Automatic recognition
Real time
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Automatic face and gesture recognition (Grenoble, 28-30 March 2000)
MergedId FETCHMERGED-LOGICAL-i118t-92765c4b127bb0b9b38ec8735994821d5e02b0988b9417712394802fa50f650d3
PageCount 6
ParticipantIDs pascalfrancis_primary_1008246
ieee_primary_840667
PublicationCentury 2000
PublicationDate 20000000
2000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle 4th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2000)
PublicationTitleAbbrev AFGR
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393810
Score 1.5037824
Snippet We propose a state-based approach to gesture learning and recognition. Using spatial clustering and temporal alignment, each gesture is defined to be an...
SourceID pascalfrancis
ieee
SourceType Index Database
Publisher
StartPage 410
SubjectTerms Applied sciences
Artificial intelligence
Automata
Computer science; control theory; systems
Decision support systems
Exact sciences and technology
Fiber reinforced plastics
Learning and adaptive systems
Pattern recognition. Digital image processing. Computational geometry
Title Gesture modeling and recognition using finite state machines
URI https://ieeexplore.ieee.org/document/840667
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz55mzh1kgdf26Vp0iTgi4jbEBQRB3sbTZrIEDtZ2xd_vbl09YIPvvVCCzkEzndOvu87AFwiXGSFkSwiJKcRMUJHkhkTCZykylBlIb_TDt8_ZLM5uVvQReuz7bUwWmtPPtOxu_Rn-cVaNa5VNrbFSJaxHujZXRakWl07xUlMeYJCYS5sWueItv4623u0PaVEYnw9mT55lUoc_tnOVnHMyLyywTFhqsW3VDPZCxruyjsUOobJa9zUMlYfv_wb_7mKfTD40vTBxy5bHYAdXR6Bq6lNCs1GQz8Qxz6HeVnAjlS0LqHjxb9As3LQFHr1EXzz_EtdDcB8cvt8M4vaeQrRypYRtY0_y6giMsFMSiSFTLlWnKVUCMJxUlCNsESCcylIwljipqZzhE1OkbFArkiPQb9cl_oEQEKNtlAKWTiWEkMtikEplRhJJiRVTA3BoVv48j1YZizDmodg9CO83WvnMIRJdvrnV2dgN-jfXd_jHPTrTaNHFgnU8sLvgU-uOK39
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODEVkRZfeCa1HHs2Ja4IERboK0QaqXeqjqxUYVIUZtc-Hq8pGERB25ZlEjjRJo34_feAHCFcJZkWrKAkBkNiBYqkEzrQOAoTjVNDeS32uHBMOmNycOETiqfbaeFUUo58pkK7aHby88WaWlbZW1TjCQJ2wRbJu0T6sVadUPFikx5hHxpLkxi54hWDjvrc7Tep0SifdPpPjudSujfWk1XsdzI2cosj_ZzLb4lm86uV3GvnEeh5Zi8hmUhw_Tjl4PjP-PYA80vVR98qvPVPthQ-SG47pq0UC4VdCNxzHU4yzNY04oWObTM-Beo5xacQqc_gm-OgalWTTDu3I1ue0E1USGYm0KiMF-AJTQlMsJMSiSFjLlKOYupEITjKKMKYYkE51KQiLHIzk3nCOsZRdpAuSw-Ao18katjAAnVyoApZABZTDQ1OAbFVGIkmZA0ZWkLHNjAp-_eNGPqY26B8x_LW9-2HkOYJCd_PnUJtnujQX_avx8-noIdr4a3XZAz0CiWpTo3uKCQF-5_-AQAwbFK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=4th+IEEE+International+Conference+on+Automatic+Face+and+Gesture+Recognition+%28FG+2000%29&rft.atitle=Gesture+modeling+and+recognition+using+finite+state+machines&rft.au=Pengyu+Hong&rft.au=Turk%2C+M.&rft.au=Huang%2C+T.S.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780769505800&rft.spage=410&rft.epage=415&rft_id=info:doi/10.1109%2FAFGR.2000.840667&rft.externalDocID=840667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769505800/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769505800/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769505800/sc.gif&client=summon&freeimage=true