Machine Learning-based Urban Mobility Monitoring System
This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interfac...
Saved in:
Published in | 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) pp. 747 - 748 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interface and with the use of cameras to monitor the presence of people, vehicles, and other means of transport, classifying them through the contribution of neural networks. The proposed solution has a high level of reliability overcoming the limits of a single technological system that offers imprecise and inaccurate monitoring. |
---|---|
AbstractList | This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interface and with the use of cameras to monitor the presence of people, vehicles, and other means of transport, classifying them through the contribution of neural networks. The proposed solution has a high level of reliability overcoming the limits of a single technological system that offers imprecise and inaccurate monitoring. |
Author | Bertolusso, Marco Popescu, Vlad Fadda, Mauro Spanu, Michele Giusto, Daniele |
Author_xml | – sequence: 1 givenname: Marco surname: Bertolusso fullname: Bertolusso, Marco email: m.bertolusso@studenti.unica.it organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy – sequence: 2 givenname: Michele surname: Spanu fullname: Spanu, Michele email: m.spanu13@studenti.unica.it organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy – sequence: 3 givenname: Vlad surname: Popescu fullname: Popescu, Vlad email: vlad.popescu@unitbv.ro organization: University of Transilvabia,Brasov,Romania – sequence: 4 givenname: Mauro surname: Fadda fullname: Fadda, Mauro email: mfadda1@uniss.it organization: University of Sassari,Sassari,Italy – sequence: 5 givenname: Daniele surname: Giusto fullname: Giusto, Daniele email: ddgiusto@unica.it organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy |
BookMark | eNotj81Kw0AUhUdRsK19AkHyAon3Zibzs5TgH6S60IK7cmdyoyPtRJJs8vYW7OocvgMfnKW4SH1iIW4RCkRwd3X9WisHUhYllGXhDIB26kwsUetKSdT4eS4WpZSYO6vhSqzH8QcAEGxVObsQZkPhOybOGqYhxfSVexq5zbaDp5Rteh_3cZqPJcWpH4579j6PEx-uxWVH-5HXp1yJ7ePDR_2cN29PL_V9k0dEO-W2C6QBDRjfKqXABmCtDJDv4AiRiQCVN60OZIKD0BmQTC3L4JzxpVyJm39vZObd7xAPNMy700_5B69ESSA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCNC49033.2022.9700694 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISBN | 166543161X 9781665431613 |
EISSN | 2331-9860 |
EndPage | 748 |
ExternalDocumentID | 9700694 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i118t-8fca601707bd44408c0e6470abf07071eaa014b7d6ca7c90cf703eade3c997b23 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:41 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-8fca601707bd44408c0e6470abf07071eaa014b7d6ca7c90cf703eade3c997b23 |
PageCount | 2 |
ParticipantIDs | ieee_primary_9700694 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan.-8 |
PublicationDateYYYYMMDD | 2022-01-08 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) |
PublicationTitleAbbrev | CCNC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001085598 |
Score | 1.8445728 |
Snippet | This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 747 |
SubjectTerms | Cameras Convolutional neural networks Economics flow monitoring IoT Localization Machine learning Motorcycles neural network Recurrent neural networks Smart cities Sniffing Social impact |
Title | Machine Learning-based Urban Mobility Monitoring System |
URI | https://ieeexplore.ieee.org/document/9700694 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09a8MwFHwkWdqpH0npNx46Vo5jq5I1m4ZQcOjQQLYgPT2XUnBK6gzpr69kOwktHboZgS3bQpzf-e4ewB1xsonlxGJByLiNU5YKY5iVRSwdfsYRekI_n4rJjD_NH-YduN95YYioFp9R6A_rf_l2iWtPlQ2V9MG6vAtdqVTj1drzKV5wpdLWBDyK1DDLphlXUZK4KjCOw_bkH11UahAZH0G-nb7RjryH68qE-PUrmfG_93cMg71dL3jeAdEJdKg8hYOt5fizDzKvJZMUtGmqr8yDlw1mK6PLIF_WAtlN0OxvT_QFTZD5AGbjx5dswtqOCezNFQoVSwvUwifiSGO57yWNEQkuI20KH-szIq1dSWSkFaglqggLt-G9ZDpBpaSJkzPolcuSziFAcpewWmCK7gtAFHqEinz8fEIKDacL6PsXsPhoQjEW7bNf_j18BYd-EWruIr2GXrVa041D88rc1sv4DZHSn4k |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFHwqZSgTHy3imwyMOE0TY8dzRFWgqRhaqVvljxeEkFJUkgF-PXaStgIxsEWRYjmxrPO73N0DuEGKJjIUSchQE2rCmMRMKWJ4FnKLn2GgHaGfTthoRh_nd_MW3G68MIhYic_Qd5fVv3yz1KWjyvqCu2BdugO79lwds9qttWVUnORKxI0NeBCIfpJMEiqCKLJ1YBj6zeM_-qhUMDLch3Q9gVo98uaXhfL1169sxv_O8AB6W8Oe97yBokNoYX4EnbXp-KMLPK1Ek-g1eaovxMGX8WYrJXMvXVYS2U-v3uGO6vPqKPMezIb302REmp4J5NWWCgWJMy2Zy8ThylDXTVoHyCgPpMpcsM8ApbRFkeKGacm1CHRmt7wTTUdaCK7C6Bja-TLHE_A02iGMZDrW9gzAMjnQAl0AfYRCK4qn0HUfYPFex2Ismnc_-_v2NXRG03S8GD9Mns5hzy1IxWTEF9AuViVeWmwv1FW1pN8bA6LU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+19th+Annual+Consumer+Communications+%26+Networking+Conference+%28CCNC%29&rft.atitle=Machine+Learning-based+Urban+Mobility+Monitoring+System&rft.au=Bertolusso%2C+Marco&rft.au=Spanu%2C+Michele&rft.au=Popescu%2C+Vlad&rft.au=Fadda%2C+Mauro&rft.date=2022-01-08&rft.pub=IEEE&rft.eissn=2331-9860&rft.spage=747&rft.epage=748&rft_id=info:doi/10.1109%2FCCNC49033.2022.9700694&rft.externalDocID=9700694 |