Machine Learning-based Urban Mobility Monitoring System

This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interfac...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) pp. 747 - 748
Main Authors Bertolusso, Marco, Spanu, Michele, Popescu, Vlad, Fadda, Mauro, Giusto, Daniele
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interface and with the use of cameras to monitor the presence of people, vehicles, and other means of transport, classifying them through the contribution of neural networks. The proposed solution has a high level of reliability overcoming the limits of a single technological system that offers imprecise and inaccurate monitoring.
AbstractList This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people, bicycles and scooters. The system is able to detect the presence of people by sniffing the mac address of the smartphone's Wi-Fi radio interface and with the use of cameras to monitor the presence of people, vehicles, and other means of transport, classifying them through the contribution of neural networks. The proposed solution has a high level of reliability overcoming the limits of a single technological system that offers imprecise and inaccurate monitoring.
Author Bertolusso, Marco
Popescu, Vlad
Fadda, Mauro
Spanu, Michele
Giusto, Daniele
Author_xml – sequence: 1
  givenname: Marco
  surname: Bertolusso
  fullname: Bertolusso, Marco
  email: m.bertolusso@studenti.unica.it
  organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy
– sequence: 2
  givenname: Michele
  surname: Spanu
  fullname: Spanu, Michele
  email: m.spanu13@studenti.unica.it
  organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy
– sequence: 3
  givenname: Vlad
  surname: Popescu
  fullname: Popescu, Vlad
  email: vlad.popescu@unitbv.ro
  organization: University of Transilvabia,Brasov,Romania
– sequence: 4
  givenname: Mauro
  surname: Fadda
  fullname: Fadda, Mauro
  email: mfadda1@uniss.it
  organization: University of Sassari,Sassari,Italy
– sequence: 5
  givenname: Daniele
  surname: Giusto
  fullname: Giusto, Daniele
  email: ddgiusto@unica.it
  organization: University of Cagliari, UdR CNIT of Cagliari,DIEE,Cagliari,Italy
BookMark eNotj81Kw0AUhUdRsK19AkHyAon3Zibzs5TgH6S60IK7cmdyoyPtRJJs8vYW7OocvgMfnKW4SH1iIW4RCkRwd3X9WisHUhYllGXhDIB26kwsUetKSdT4eS4WpZSYO6vhSqzH8QcAEGxVObsQZkPhOybOGqYhxfSVexq5zbaDp5Rteh_3cZqPJcWpH4579j6PEx-uxWVH-5HXp1yJ7ePDR_2cN29PL_V9k0dEO-W2C6QBDRjfKqXABmCtDJDv4AiRiQCVN60OZIKD0BmQTC3L4JzxpVyJm39vZObd7xAPNMy700_5B69ESSA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCNC49033.2022.9700694
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISBN 166543161X
9781665431613
EISSN 2331-9860
EndPage 748
ExternalDocumentID 9700694
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-8fca601707bd44408c0e6470abf07071eaa014b7d6ca7c90cf703eade3c997b23
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:41 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-8fca601707bd44408c0e6470abf07071eaa014b7d6ca7c90cf703eade3c997b23
PageCount 2
ParticipantIDs ieee_primary_9700694
PublicationCentury 2000
PublicationDate 2022-Jan.-8
PublicationDateYYYYMMDD 2022-01-08
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)
PublicationTitleAbbrev CCNC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085598
Score 1.8445728
Snippet This article analyzes how streams of people move around a city. Wi-Fi sniffing techniques and camera systems are used for classifying vehicles, people,...
SourceID ieee
SourceType Publisher
StartPage 747
SubjectTerms Cameras
Convolutional neural networks
Economics
flow monitoring
IoT
Localization
Machine learning
Motorcycles
neural network
Recurrent neural networks
Smart cities
Sniffing
Social impact
Title Machine Learning-based Urban Mobility Monitoring System
URI https://ieeexplore.ieee.org/document/9700694
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09a8MwFHwkWdqpH0npNx46Vo5jq5I1m4ZQcOjQQLYgPT2XUnBK6gzpr69kOwktHboZgS3bQpzf-e4ewB1xsonlxGJByLiNU5YKY5iVRSwdfsYRekI_n4rJjD_NH-YduN95YYioFp9R6A_rf_l2iWtPlQ2V9MG6vAtdqVTj1drzKV5wpdLWBDyK1DDLphlXUZK4KjCOw_bkH11UahAZH0G-nb7RjryH68qE-PUrmfG_93cMg71dL3jeAdEJdKg8hYOt5fizDzKvJZMUtGmqr8yDlw1mK6PLIF_WAtlN0OxvT_QFTZD5AGbjx5dswtqOCezNFQoVSwvUwifiSGO57yWNEQkuI20KH-szIq1dSWSkFaglqggLt-G9ZDpBpaSJkzPolcuSziFAcpewWmCK7gtAFHqEinz8fEIKDacL6PsXsPhoQjEW7bNf_j18BYd-EWruIr2GXrVa041D88rc1sv4DZHSn4k
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFHwqZSgTHy3imwyMOE0TY8dzRFWgqRhaqVvljxeEkFJUkgF-PXaStgIxsEWRYjmxrPO73N0DuEGKJjIUSchQE2rCmMRMKWJ4FnKLn2GgHaGfTthoRh_nd_MW3G68MIhYic_Qd5fVv3yz1KWjyvqCu2BdugO79lwds9qttWVUnORKxI0NeBCIfpJMEiqCKLJ1YBj6zeM_-qhUMDLch3Q9gVo98uaXhfL1169sxv_O8AB6W8Oe97yBokNoYX4EnbXp-KMLPK1Ek-g1eaovxMGX8WYrJXMvXVYS2U-v3uGO6vPqKPMezIb302REmp4J5NWWCgWJMy2Zy8ThylDXTVoHyCgPpMpcsM8ApbRFkeKGacm1CHRmt7wTTUdaCK7C6Bja-TLHE_A02iGMZDrW9gzAMjnQAl0AfYRCK4qn0HUfYPFex2Ismnc_-_v2NXRG03S8GD9Mns5hzy1IxWTEF9AuViVeWmwv1FW1pN8bA6LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+19th+Annual+Consumer+Communications+%26+Networking+Conference+%28CCNC%29&rft.atitle=Machine+Learning-based+Urban+Mobility+Monitoring+System&rft.au=Bertolusso%2C+Marco&rft.au=Spanu%2C+Michele&rft.au=Popescu%2C+Vlad&rft.au=Fadda%2C+Mauro&rft.date=2022-01-08&rft.pub=IEEE&rft.eissn=2331-9860&rft.spage=747&rft.epage=748&rft_id=info:doi/10.1109%2FCCNC49033.2022.9700694&rft.externalDocID=9700694