TeMIA-NT: ThrEat Monitoring and Intelligent data Analytics of Network Traffic
Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent d...
Saved in:
Published in | 2020 4th Conference on Cloud and Internet of Things (CIoT) pp. 9 - 16 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.10.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent data Analytics of Network Traffic), a real-time flow analysis system that uses parallel flow processing. The main contributions of the TeMIA-NT are: i) the proposal of an architecture for realtime detection of network intrusions that supports high traffic rates, ii) the use of the structured streaming library, and iii) two modes of operation: offline and online. The offline operation mode allows evaluating the performance of multiple machine learning algorithms over a given dataset, including metrics such as accuracy, F1-score, and area under the curve (AUC). The proposal uses dataframe structures, in online mode, the structured streaming library in continuous mode, which allows detection of threats in real-time and a quick reaction to attacks. To prevent or minimize the damage caused by security attacks, TeMIA-NT achieves flow-processing rates that reach 50 GB/S. |
---|---|
AbstractList | Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent data Analytics of Network Traffic), a real-time flow analysis system that uses parallel flow processing. The main contributions of the TeMIA-NT are: i) the proposal of an architecture for realtime detection of network intrusions that supports high traffic rates, ii) the use of the structured streaming library, and iii) two modes of operation: offline and online. The offline operation mode allows evaluating the performance of multiple machine learning algorithms over a given dataset, including metrics such as accuracy, F1-score, and area under the curve (AUC). The proposal uses dataframe structures, in online mode, the structured streaming library in continuous mode, which allows detection of threats in real-time and a quick reaction to attacks. To prevent or minimize the damage caused by security attacks, TeMIA-NT achieves flow-processing rates that reach 50 GB/S. |
Author | Fernandes, Felipe S. Duarte, Otto Carlos M. B. Rebello, Gabriel Antonio F. Camilo, Gustavo F. Guimaraes, Lucas C. B. de Oliveira, Luiz Gustavo C. M. de Souza, Lucas Airam C. dos Santos, Danyel C. |
Author_xml | – sequence: 1 givenname: Lucas C. B. surname: Guimaraes fullname: Guimaraes, Lucas C. B. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 2 givenname: Gabriel Antonio F. surname: Rebello fullname: Rebello, Gabriel Antonio F. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 3 givenname: Felipe S. surname: Fernandes fullname: Fernandes, Felipe S. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 4 givenname: Gustavo F. surname: Camilo fullname: Camilo, Gustavo F. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 5 givenname: Lucas Airam C. surname: de Souza fullname: de Souza, Lucas Airam C. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 6 givenname: Danyel C. surname: dos Santos fullname: dos Santos, Danyel C. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 7 givenname: Luiz Gustavo C. M. surname: de Oliveira fullname: de Oliveira, Luiz Gustavo C. M. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) – sequence: 8 givenname: Otto Carlos M. B. surname: Duarte fullname: Duarte, Otto Carlos M. B. organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ) |
BookMark | eNotj8FKxDAURSPowhn9AkHyA615adq07koZtTAdN3E9vLYvY7AmkgnI_L0DzuquzuHcFbv2wRNjjyByANE8dX0wpVBS5lJIkTdSKSmqK7YCLWtoSgVwywZDQ99mO_PMzWfcYOJD8C6F6PyBo5957xMtizuQT3zGhLz1uJySm448WL6j9BviFzcRrXXTHbuxuBzp_rJr9vGyMd1btn1_7bt2mzmAOmW1rsvREihVzRKlRa2qcyfiOGmiCWxTinmUWikhZiuLWjR21BNCcQbLqijW7OHf64ho_xPdN8bT_vKw-APe6kpz |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CIoT50422.2020.9244206 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728195411 9781728195414 |
EndPage | 16 |
ExternalDocumentID | 9244206 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-8785bfe1446d2a2fa746422aabc7eec1f950db274400df23809fb7ca137855633 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:55 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-8785bfe1446d2a2fa746422aabc7eec1f950db274400df23809fb7ca137855633 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9244206 |
PublicationCentury | 2000 |
PublicationDate | 2020-Oct.-7 |
PublicationDateYYYYMMDD | 2020-10-07 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-7 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | 2020 4th Conference on Cloud and Internet of Things (CIoT) |
PublicationTitleAbbrev | CIoT |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7829461 |
Snippet | Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 9 |
Title | TeMIA-NT: ThrEat Monitoring and Intelligent data Analytics of Network Traffic |
URI | https://ieeexplore.ieee.org/document/9244206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ08qm_ibHDzark2bpvUmY2MTOjx0sNvIj68oQivSXfzr_b62ThQP3pqSkJKQPF763gtjtyIL0zS21rOkbI8VRB4WkbgqKZzUGgIgN3K-Shbr-HEjNwN2t_fCAEArPgOfHtt_-a62OzoqmyBXiAXlax-oLOu8Wr3pNwyyyXRZF5IirZD1icDvK_-4NaUFjfkRy7-667Qir_6uMb79-JXE-N_vOWbjb3sef9oDzwkbQDVieQH58sFbFfe8eH6f6YZ3y5XO7biuHF_uwzcbTrpQ3uaRUEozr0u-6uTgHLGLQiXGbD2fFdOF19-V4L0gRWhwU0ulKYHYnRNalFrFyCyE1sYqABuWmQycaeMAA1ciTgdZaZTVYYQNZRJFp2xY1RWcMS6Rs1rnUhsRV0oSxCvEcOOEwnIYqnM2oqHYvnVxGNt-FC7-fn3JDmk6Wv2bumLD5n0H14jjjblpJ_AT2bucvw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwHG2WedCTms34bQ8ehUGhFLyZZcvQQTywZLelX0RjAmaBi3-9vxac0Xjw1jYlkDbweO17rwjdksSP41BKRxple8h04EAViCujRFHOtaeNGznLo8UqfFzT9QDd7bwwWmsrPtOuKdq9fFXL1iyVTYArhMTka-_Bf3UcdW6t3vbre8lkmtYFNaFWwPuI5_bdf5ybYmFjfoiyrxt2apE3t22EKz9-ZTH-94mO0PjboIefd9BzjAa6GqGs0Fn64OTFPS5etjPe4O6FNSt3mFcKp7v4zQYbZSi2iSQmpxnXJc47QTgG9DKxEmO0ms-K6cLpT0twXoEkNPBZi6koteF3inBSchYCtyCcC8m0ln6ZUE8JGwjoqRKQ2ktKwST3A7iQRkFwgoZVXelThCmwVqlULAPDlqIIEAtQXCjCoO777AyNzFBs3rtAjE0_Cud_N9-g_UWRLTfLNH-6QAdmaqwajl2iYbNt9RWgeiOu7WR-Aj6EoAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+4th+Conference+on+Cloud+and+Internet+of+Things+%28CIoT%29&rft.atitle=TeMIA-NT%3A+ThrEat+Monitoring+and+Intelligent+data+Analytics+of+Network+Traffic&rft.au=Guimaraes%2C+Lucas+C.+B.&rft.au=Rebello%2C+Gabriel+Antonio+F.&rft.au=Fernandes%2C+Felipe+S.&rft.au=Camilo%2C+Gustavo+F.&rft.date=2020-10-07&rft.pub=IEEE&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1109%2FCIoT50422.2020.9244206&rft.externalDocID=9244206 |