TeMIA-NT: ThrEat Monitoring and Intelligent data Analytics of Network Traffic

Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent d...

Full description

Saved in:
Bibliographic Details
Published in2020 4th Conference on Cloud and Internet of Things (CIoT) pp. 9 - 16
Main Authors Guimaraes, Lucas C. B., Rebello, Gabriel Antonio F., Fernandes, Felipe S., Camilo, Gustavo F., de Souza, Lucas Airam C., dos Santos, Danyel C., de Oliveira, Luiz Gustavo C. M., Duarte, Otto Carlos M. B.
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.10.2020
Online AccessGet full text

Cover

Loading…
Abstract Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent data Analytics of Network Traffic), a real-time flow analysis system that uses parallel flow processing. The main contributions of the TeMIA-NT are: i) the proposal of an architecture for realtime detection of network intrusions that supports high traffic rates, ii) the use of the structured streaming library, and iii) two modes of operation: offline and online. The offline operation mode allows evaluating the performance of multiple machine learning algorithms over a given dataset, including metrics such as accuracy, F1-score, and area under the curve (AUC). The proposal uses dataframe structures, in online mode, the structured streaming library in continuous mode, which allows detection of threats in real-time and a quick reaction to attacks. To prevent or minimize the damage caused by security attacks, TeMIA-NT achieves flow-processing rates that reach 50 GB/S.
AbstractList Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of irreparable damage, with high financial losses being a common occurrence. This article proposes TeMIA-NT (ThrEat Monitoring and Intelligent data Analytics of Network Traffic), a real-time flow analysis system that uses parallel flow processing. The main contributions of the TeMIA-NT are: i) the proposal of an architecture for realtime detection of network intrusions that supports high traffic rates, ii) the use of the structured streaming library, and iii) two modes of operation: offline and online. The offline operation mode allows evaluating the performance of multiple machine learning algorithms over a given dataset, including metrics such as accuracy, F1-score, and area under the curve (AUC). The proposal uses dataframe structures, in online mode, the structured streaming library in continuous mode, which allows detection of threats in real-time and a quick reaction to attacks. To prevent or minimize the damage caused by security attacks, TeMIA-NT achieves flow-processing rates that reach 50 GB/S.
Author Fernandes, Felipe S.
Duarte, Otto Carlos M. B.
Rebello, Gabriel Antonio F.
Camilo, Gustavo F.
Guimaraes, Lucas C. B.
de Oliveira, Luiz Gustavo C. M.
de Souza, Lucas Airam C.
dos Santos, Danyel C.
Author_xml – sequence: 1
  givenname: Lucas C. B.
  surname: Guimaraes
  fullname: Guimaraes, Lucas C. B.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 2
  givenname: Gabriel Antonio F.
  surname: Rebello
  fullname: Rebello, Gabriel Antonio F.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 3
  givenname: Felipe S.
  surname: Fernandes
  fullname: Fernandes, Felipe S.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 4
  givenname: Gustavo F.
  surname: Camilo
  fullname: Camilo, Gustavo F.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 5
  givenname: Lucas Airam C.
  surname: de Souza
  fullname: de Souza, Lucas Airam C.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 6
  givenname: Danyel C.
  surname: dos Santos
  fullname: dos Santos, Danyel C.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 7
  givenname: Luiz Gustavo C. M.
  surname: de Oliveira
  fullname: de Oliveira, Luiz Gustavo C. M.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
– sequence: 8
  givenname: Otto Carlos M. B.
  surname: Duarte
  fullname: Duarte, Otto Carlos M. B.
  organization: Grupo de Teleinformática e Automação (GTA/PEE/COPPE), Universidade Federal do Rio de Janeiro (UFRJ)
BookMark eNotj8FKxDAURSPowhn9AkHyA615adq07koZtTAdN3E9vLYvY7AmkgnI_L0DzuquzuHcFbv2wRNjjyByANE8dX0wpVBS5lJIkTdSKSmqK7YCLWtoSgVwywZDQ99mO_PMzWfcYOJD8C6F6PyBo5957xMtizuQT3zGhLz1uJySm448WL6j9BviFzcRrXXTHbuxuBzp_rJr9vGyMd1btn1_7bt2mzmAOmW1rsvREihVzRKlRa2qcyfiOGmiCWxTinmUWikhZiuLWjR21BNCcQbLqijW7OHf64ho_xPdN8bT_vKw-APe6kpz
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIoT50422.2020.9244206
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728195411
9781728195414
EndPage 16
ExternalDocumentID 9244206
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-8785bfe1446d2a2fa746422aabc7eec1f950db274400df23809fb7ca137855633
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:55 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-8785bfe1446d2a2fa746422aabc7eec1f950db274400df23809fb7ca137855633
PageCount 8
ParticipantIDs ieee_primary_9244206
PublicationCentury 2000
PublicationDate 2020-Oct.-7
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2020 4th Conference on Cloud and Internet of Things (CIoT)
PublicationTitleAbbrev CIoT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7829461
Snippet Cybernetic attacks have been increasingly common and cause great harm to people and organizations. Late detection of such attacks increases the possibility of...
SourceID ieee
SourceType Publisher
StartPage 9
Title TeMIA-NT: ThrEat Monitoring and Intelligent data Analytics of Network Traffic
URI https://ieeexplore.ieee.org/document/9244206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ08qm_ibHDzark2bpvUmY2MTOjx0sNvIj68oQivSXfzr_b62ThQP3pqSkJKQPF763gtjtyIL0zS21rOkbI8VRB4WkbgqKZzUGgIgN3K-Shbr-HEjNwN2t_fCAEArPgOfHtt_-a62OzoqmyBXiAXlax-oLOu8Wr3pNwyyyXRZF5IirZD1icDvK_-4NaUFjfkRy7-667Qir_6uMb79-JXE-N_vOWbjb3sef9oDzwkbQDVieQH58sFbFfe8eH6f6YZ3y5XO7biuHF_uwzcbTrpQ3uaRUEozr0u-6uTgHLGLQiXGbD2fFdOF19-V4L0gRWhwU0ulKYHYnRNalFrFyCyE1sYqABuWmQycaeMAA1ciTgdZaZTVYYQNZRJFp2xY1RWcMS6Rs1rnUhsRV0oSxCvEcOOEwnIYqnM2oqHYvnVxGNt-FC7-fn3JDmk6Wv2bumLD5n0H14jjjblpJ_AT2bucvw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwHG2WedCTms34bQ8ehUGhFLyZZcvQQTywZLelX0RjAmaBi3-9vxac0Xjw1jYlkDbweO17rwjdksSP41BKRxple8h04EAViCujRFHOtaeNGznLo8UqfFzT9QDd7bwwWmsrPtOuKdq9fFXL1iyVTYArhMTka-_Bf3UcdW6t3vbre8lkmtYFNaFWwPuI5_bdf5ybYmFjfoiyrxt2apE3t22EKz9-ZTH-94mO0PjboIefd9BzjAa6GqGs0Fn64OTFPS5etjPe4O6FNSt3mFcKp7v4zQYbZSi2iSQmpxnXJc47QTgG9DKxEmO0ms-K6cLpT0twXoEkNPBZi6koteF3inBSchYCtyCcC8m0ln6ZUE8JGwjoqRKQ2ktKwST3A7iQRkFwgoZVXelThCmwVqlULAPDlqIIEAtQXCjCoO777AyNzFBs3rtAjE0_Cud_N9-g_UWRLTfLNH-6QAdmaqwajl2iYbNt9RWgeiOu7WR-Aj6EoAo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+4th+Conference+on+Cloud+and+Internet+of+Things+%28CIoT%29&rft.atitle=TeMIA-NT%3A+ThrEat+Monitoring+and+Intelligent+data+Analytics+of+Network+Traffic&rft.au=Guimaraes%2C+Lucas+C.+B.&rft.au=Rebello%2C+Gabriel+Antonio+F.&rft.au=Fernandes%2C+Felipe+S.&rft.au=Camilo%2C+Gustavo+F.&rft.date=2020-10-07&rft.pub=IEEE&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1109%2FCIoT50422.2020.9244206&rft.externalDocID=9244206