Pyramid Knowledge Distillation for Efficient Human Pose Estimation
Human pose estimation is an important task in many real-time applications. Existing methods directly slim the CNN by deploying well-designed lightweight modules. However, these methods lack privileged information guidance and the knowledge distillation technique stays less explored. In this work, we...
Saved in:
Published in | 2022 IEEE International Conference on Image Processing (ICIP) pp. 2177 - 2181 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human pose estimation is an important task in many real-time applications. Existing methods directly slim the CNN by deploying well-designed lightweight modules. However, these methods lack privileged information guidance and the knowledge distillation technique stays less explored. In this work, we propose a novel method, namely Pyramid Knowledge Distillation (PKD) for efficient human pose estimation. Specifically, PKD composes of Pyramid Structured Map Distillation (PSMD) and Pyramid Feature Map Distillation (PFMD). In PSMD, we formulate a structured map encoding robust interjoint correlation. Based on structured map, the spatial dependencies between keypoints can be better transferred from a cumbersome teacher network to a compact student model. To further promote the efficiency of student, PFMD is used to distill rich local and global features from teacher. Experiments demonstrate that PKD achieves an optimal trade-off between cost and accuracy on COCO and MPII benchmarks, even with a much faster inference speed. |
---|---|
AbstractList | Human pose estimation is an important task in many real-time applications. Existing methods directly slim the CNN by deploying well-designed lightweight modules. However, these methods lack privileged information guidance and the knowledge distillation technique stays less explored. In this work, we propose a novel method, namely Pyramid Knowledge Distillation (PKD) for efficient human pose estimation. Specifically, PKD composes of Pyramid Structured Map Distillation (PSMD) and Pyramid Feature Map Distillation (PFMD). In PSMD, we formulate a structured map encoding robust interjoint correlation. Based on structured map, the spatial dependencies between keypoints can be better transferred from a cumbersome teacher network to a compact student model. To further promote the efficiency of student, PFMD is used to distill rich local and global features from teacher. Experiments demonstrate that PKD achieves an optimal trade-off between cost and accuracy on COCO and MPII benchmarks, even with a much faster inference speed. |
Author | Jiao, Peng Wang, Haoqian Li, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: Tsinghua Shenzhen International Graduate School – sequence: 2 givenname: Peng surname: Jiao fullname: Jiao, Peng organization: Tsinghua Shenzhen International Graduate School – sequence: 3 givenname: Haoqian surname: Wang fullname: Wang, Haoqian email: wanghaoqian@tsinghua.edu.cn organization: Tsinghua Shenzhen International Graduate School |
BookMark | eNotj99KwzAYxaNMcJ0-gSB5gdZ8SZr0u9RaXXGwXux-xDSRSJtKW5G9vUV3dTjw4_xJyCoO0RFyDywDYPhQl3UjVa5VxhnnGRaoc6EuSAJK5RIVZ_qSrLkoIC0Wf02SafpkjDMQsCZPzWk0fWjpWxx-Otd-OPocpjl0nZnDEKkfRlp5H2xwcabb795E2gyTo9UC9X_MDbnyppvc7Vk35PBSHcptutu_1uXjLg0AxZxqjUYb5FJbNOi8tqoV6DlHYAKZZEqCxRbtuwWwhnGbewAn_TK0VVpsyN1_bHDOHb_GpX08Hc93xS-DFku2 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP46576.2022.9897536 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665496207 9781665496209 |
EISSN | 2381-8549 |
EndPage | 2181 |
ExternalDocumentID | 9897536 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i118t-779a7a9247c9a9ef7c6d39f2291039040641c9d9cbc11ca02c5f11e4f013d673 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-779a7a9247c9a9ef7c6d39f2291039040641c9d9cbc11ca02c5f11e4f013d673 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9897536 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-16 |
PublicationDateYYYYMMDD | 2022-10-16 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.2475412 |
Snippet | Human pose estimation is an important task in many real-time applications. Existing methods directly slim the CNN by deploying well-designed lightweight... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2177 |
SubjectTerms | Benchmark testing Computational modeling Correlation Costs Deep learning Human pose estimation Image coding Knowledge distillation Pose estimation Real-time systems |
Title | Pyramid Knowledge Distillation for Efficient Human Pose Estimation |
URI | https://ieeexplore.ieee.org/document/9897536 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp5QwfidHjy6sXZrx7uKENBgdsCEG-naLiEqGNgO-tfbbgOj8eBtWdZ0eS8v7_P3ewA3LJJZICX1UqrKFWbc6yvOPRSaGY6hQek6utMnMX6OHuZ83oDbPRbGGFMOnxnfPZa9fL1WhSuV9bDvYKCiCc0YscJq7ZMrxxtTI4BpgL3JYJJEwgbTNgVkzK9P_lihUnqQURumu7urwZEXv8hTX33-omX8788dQvcbq0eSvRc6goZZHUO7Di5JbbrbDtwlHxv5ttTkcVdFI_fOvl-rYThig1cyLPkk7DWkrO2TZL01ZGg_qvCNXZiNhrPB2KsXKHhLmzfkNnJGGUubYcUKJZosVkKHmDGGrgFszVdEVkMaVaooVTJgimeUmiizwtQiDk-gtVqvzCmQkEkpAqnjAF3AwjGKHPU7TblkQpvwDDpOIov3iiJjUQvj_O_XF3DgtOJcABWX0Mo3hbmyvj1Pr0ulfgHyS6Ln |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW88cBI0tixnXqltGrpQxmK1K1ybEeqgBa16QC_HjtJi0AMbFEUy9GdTvfd47sDuCNUpoGU2EuwyleYMa-lGPME18QwERohXUV3NOa9Z_o0ZdMK3O-4MMaYvPnM-O4xr-Xrpdq4VFlTtBwNlO_BvsXVLV6wtXbhlZscU3KAcSCa_XY_ptzCaRsEEuKXZ38sUcl9SLcGo-3tRevIi7_JEl99_hrM-N_fO4LGN1sPxTs_dAwVsziBWgkvUWm86zo8xB8r-TbXaLDNo6FHZ-GvRTscsvAVdfKJEvYalGf3UbxcG9SxHxUMxwZMup1Ju-eVKxS8uY0cMoudhYykjbEiJaQwaaS4DkVKiHAlYGvAnFodaaEShbGSAVEsxdjQ1ApT8yg8hepiuTBngEIiJQ-kjgLhIAsTlLrh7zhhknBtwnOoO4nM3oshGbNSGBd_v76Fg95kNJwN--PBJRw6DTmHgPkVVLPVxlxbT58lN7mCvwCosKYy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Pyramid+Knowledge+Distillation+for+Efficient+Human+Pose+Estimation&rft.au=Li%2C+Yang&rft.au=Jiao%2C+Peng&rft.au=Wang%2C+Haoqian&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=2177&rft.epage=2181&rft_id=info:doi/10.1109%2FICIP46576.2022.9897536&rft.externalDocID=9897536 |