Application of mobile injection molding pump defect detection system based on deep learning

As a core product in daily chemical products, injection pumps are used frequently in life, so the quality control of injection pumps has become a very important aspect for injection pump manufacturers. The purpose of this paper is to study the deep learning-based defect detection method for injectio...

Full description

Saved in:
Bibliographic Details
Published in2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE) pp. 470 - 475
Main Authors Li, Jun-xian, Li, Ying, Zhang, Xue-xi, Zhan, Rui-dian, Tang, Hao-ran, Huang, Hong-min
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.01.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCECE54139.2022.9712789

Cover

Abstract As a core product in daily chemical products, injection pumps are used frequently in life, so the quality control of injection pumps has become a very important aspect for injection pump manufacturers. The purpose of this paper is to study the deep learning-based defect detection method for injection pumps to achieve a fully automated, stable, efficient and easy-to-deploy defect detection system for injection pumps. A CenterNet-based defect detection model is proposed to improve the DLA based on deformable convolution to increase the recognition ability of irregular defects, and a focused loss function is used to solve the problem of uneven positive and negative samples. And the model compression method of channel sparsification and the model quantization method of NCNN are used to optimize the deployment of the model in mobile.
AbstractList As a core product in daily chemical products, injection pumps are used frequently in life, so the quality control of injection pumps has become a very important aspect for injection pump manufacturers. The purpose of this paper is to study the deep learning-based defect detection method for injection pumps to achieve a fully automated, stable, efficient and easy-to-deploy defect detection system for injection pumps. A CenterNet-based defect detection model is proposed to improve the DLA based on deformable convolution to increase the recognition ability of irregular defects, and a focused loss function is used to solve the problem of uneven positive and negative samples. And the model compression method of channel sparsification and the model quantization method of NCNN are used to optimize the deployment of the model in mobile.
Author Zhang, Xue-xi
Li, Ying
Huang, Hong-min
Zhan, Rui-dian
Li, Jun-xian
Tang, Hao-ran
Author_xml – sequence: 1
  givenname: Jun-xian
  surname: Li
  fullname: Li, Jun-xian
  email: 3219008903@mail2.gdut.edu.en
  organization: Guangdong University of Technology,GuangZhou,China,510006
– sequence: 2
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  email: 2112004207@mail2.gdut.edu.cn
  organization: Guangdong University of Technology,GuangZhou,China,510006
– sequence: 3
  givenname: Xue-xi
  surname: Zhang
  fullname: Zhang, Xue-xi
  email: zxxnet@gdut.edu.cn
  organization: Guangdong University of Technology,GuangZhou,China,510006
– sequence: 4
  givenname: Rui-dian
  surname: Zhan
  fullname: Zhan, Rui-dian
  email: rd.zhan@gdut.edu.en
  organization: Guangdong University of Technology,GuangZhou,China,510006
– sequence: 5
  givenname: Hao-ran
  surname: Tang
  fullname: Tang, Hao-ran
  email: 2112004206@mail2.gdut.edu.en
  organization: Guangdong University of Technology,GuangZhou,China,510006
– sequence: 6
  givenname: Hong-min
  surname: Huang
  fullname: Huang, Hong-min
  email: 2112104227@mail2.gdut.edu.cn
  organization: Chipeye Microelectronics Foshan Ltd,Foshan,China,5282225
BookMark eNotT7tOwzAUNRIMUPoFLP6BBF_Hz7GKAlSq1AUmhsqJr5FR4lhJGPr3RJDp6Dyl80Bu05iQEAqsBGD2-VjXTd1IAZUtOeO8tBq4NvaG7K02oJQUzBhl7snnIec-dm6JY6JjoMPYxh5pTN_Y_WnD2PuYvmj-GTL1GFZ5hWVz5-u84EBbN6OnK_eImfboprR2HsldcP2M-w135OOlea_fitP59VgfTkUEMEuhldGOceu46BQwbaRtneBM6eCNlchQSulbo7VpA4gg0K6JinMHXjAnqx15-t-NiHjJUxzcdL1sl6tfEu1Rtw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCECE54139.2022.9712789
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665408868
1665408863
EndPage 475
ExternalDocumentID 9712789
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61803104
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-7687a029a24c6107859ba42067fd895e0e555db8778bf14f4e959b322a1d40a53
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-7687a029a24c6107859ba42067fd895e0e555db8778bf14f4e959b322a1d40a53
PageCount 6
ParticipantIDs ieee_primary_9712789
PublicationCentury 2000
PublicationDate 2022-Jan.-14
PublicationDateYYYYMMDD 2022-01-14
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-14
  day: 14
PublicationDecade 2020
PublicationTitle 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE)
PublicationTitleAbbrev ICCECE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.805783
Snippet As a core product in daily chemical products, injection pumps are used frequently in life, so the quality control of injection pumps has become a very...
SourceID ieee
SourceType Publisher
StartPage 470
SubjectTerms Chemical products
Computational modeling
Convolution
Deep learning
deformable convolution
Deformable models
Intelligent injection pumps
NCNN
Quality control
Quantization (signal)
Title Application of mobile injection molding pump defect detection system based on deep learning
URI https://ieeexplore.ieee.org/document/9712789
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhxmoddOyOKWhWkIgYqVWKoYvuMCiKpULrw6zknaSsQA1Mc20oin53z-e77jpCbPFEKFFhmnZGMR9Yxz0nCJG6fcYIJA9qDk2ePo-mcPyzEokNud1gYAKiDzyDwxdqXb0uz8Udlw1RGHrjZJV2cZg1WaxucE6bD-ywbZ2OBf2UPQInjoO3-I29KrTYmh2S2fWETLfIebCodmK9fXIz__aIjMtgD9OjTTvUckw4UffJyt3dG09LRj1Ljkqer4q0OtyqwovY00TWKkFrwgRx4qdrWhtOZerVmKd5bgDVtk0q8Dsh8Mn7OpqzNncBWaDJUDK0ImYdxmsfc4A5JKpHqnHuudmdVKiAEIYTVSkqlXcQdhxR74OrOI8vDXCQnpFeUBZwSapw23MWJQ9uKwyjOpdSAT9HaKWVGyRnp-4FZrht6jGU7Jud_V1-QAy8cf4oR8UvSqz43cIV6vdLXtUC_AfmhpdQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaR527YwoatVCWzG0UiWGKo7PqCCSCqULv55zkrYCMTDFsRMn8sX5fL777gi5S0IpQYJ2tEmFw3xtHBuTxBG4fMYPjKegLDl5POkOZuxxzucNcr_lwgBA6XwGri2Wtnydp2u7VdaJhG-Jm3tkH3Gf8YqttXHP8aLOMI57cY_jf9lSUILArW_4kTmlBI7-ERlvHln5i7y760K56devaIz_fadj0t5R9OjzFnxOSAOyFnl52JmjaW7oR65w0tNl9lY6XGVYUdqa6AqFSDVYVw48FHVrFdWZWmDTFM81wIrWaSVe22TW703jgVNnT3CWqDQUDuoRIvGCKAlYimskIXmkEmajtRstIw4ecM61kkJIZXxmGER4Bc7vxNfMS3h4SppZnsEZoalRKTNBaFC7YtANEiEUYC9KGSnTbnhOWnZgFqsqQMaiHpOLv6tvycFgOh4tRsPJ0yU5tIKyexo-uyLN4nMN14jyhbophfsN1kCpIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Consumer+Electronics+and+Computer+Engineering+%28ICCECE%29&rft.atitle=Application+of+mobile+injection+molding+pump+defect+detection+system+based+on+deep+learning&rft.au=Li%2C+Jun-xian&rft.au=Li%2C+Ying&rft.au=Zhang%2C+Xue-xi&rft.au=Zhan%2C+Rui-dian&rft.date=2022-01-14&rft.pub=IEEE&rft.spage=470&rft.epage=475&rft_id=info:doi/10.1109%2FICCECE54139.2022.9712789&rft.externalDocID=9712789