Wasserstein-Distance-Based Multi-Source Adversarial Domain Adaptation for Emotion Recognition and Vigilance Estimation

To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification an...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 1424 - 1428
Main Authors Luo, Yun, Lu, Bao-Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.12.2021
Subjects
Online AccessGet full text
DOI10.1109/BIBM52615.2021.9669383

Cover

Loading…
Abstract To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification and regression problems. Based on our bound, we propose two novel Wasserstein-distance-based multi-source adversarial domain adaptation methods (wMADA) for learning domain invariant and task discriminative domain mappings by dynamically aligning different domain mappings. We evaluate our methods on two typical EEG datasets. The experimental results demonstrate that our wMADA methods successfully handle the multi-source domain shift problem in creating subject-independent affective models and outperform the state-of-the-art domain adaptation methods.
AbstractList To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification and regression problems. Based on our bound, we propose two novel Wasserstein-distance-based multi-source adversarial domain adaptation methods (wMADA) for learning domain invariant and task discriminative domain mappings by dynamically aligning different domain mappings. We evaluate our methods on two typical EEG datasets. The experimental results demonstrate that our wMADA methods successfully handle the multi-source domain shift problem in creating subject-independent affective models and outperform the state-of-the-art domain adaptation methods.
Author Luo, Yun
Lu, Bao-Liang
Author_xml – sequence: 1
  givenname: Yun
  surname: Luo
  fullname: Luo, Yun
  email: angeleader@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China
– sequence: 2
  givenname: Bao-Liang
  surname: Lu
  fullname: Lu, Bao-Liang
  email: bllu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China
BookMark eNotkM1qwzAQhFVoD22aJygUvYBTrRRL1jE_bhpIKPT3GGRrHQS2FCwl0Levm2YvOww738DekWsfPBLyCGwCwPTTfD3f5lxCPuGMw0RLqUUhrshYqwKkzKcMuMxvyenbxIh9TOh8tnQxGV9jNjcRLd0e2-Sy93Dsa6QzexrOTO9MS5ehM84Pljkkk1zwtAk9Lbtw1m9Yh713Z228pV9u79o_LC1jct05cE9uGtNGHF_2iHw-lx-Ll2zzulovZpvMARQpk5aLKRNC5QZULaFqGoG5rGqmgRdMMSsrpXkxjNSKgW2sQTVFKBTnDIQYkYd_rkPE3aEf6vuf3eUb4hf2Vlq9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIBM52615.2021.9669383
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665401265
1665401265
EndPage 1428
ExternalDocumentID 9669383
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-6d23403375a17c61bff3e56bc09128070d6b792888869701dfdae74e187220133
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-6d23403375a17c61bff3e56bc09128070d6b792888869701dfdae74e187220133
PageCount 5
ParticipantIDs ieee_primary_9669383
PublicationCentury 2000
PublicationDate 2021-Dec.-9
PublicationDateYYYYMMDD 2021-12-09
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
PublicationTitleAbbrev BIBM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7811364
Snippet To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual...
SourceID ieee
SourceType Publisher
StartPage 1424
SubjectTerms Affective brain-computer interface
Brain modeling
Buildings
Conferences
Data models
EEG-based emotion recognition
EEG-based vigilance estimation
Electroencephalography
Emotion recognition
Estimation
multisource domain adaptation
Title Wasserstein-Distance-Based Multi-Source Adversarial Domain Adaptation for Emotion Recognition and Vigilance Estimation
URI https://ieeexplore.ieee.org/document/9669383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCbbTp7UbMbf4eBROloKtNe5LdNkxqjT3RYK1Cxqt2jnwb_eB-1mNB68EfJSCJC-74P3vYfQGXdKV0ASJEooJ3GaS5LxHKiK5CkDCG20cOLk8bUYTeKrKZ820PlGC2Ot9cFnNnBN_5ZvFnrlrsq6AM1TYFRN1ATiVmm1atFvSNNu77I35kAIOLC-KAxq4x9VU7zTGG6j8Xq4KlbkOViVWaA_f2Vi_O98dlDnW56HbzaOZxc1bNFGH4_KKydd9UrSd6gQzEgPnJTBXmVL7vw9PfYlmN-VO3i4v3hV8wK61LJ6kseAYfGgKu2Db9fBRdBWhcEP86f5i_ssHsCPodI8dtBkOLi_GJG6qAKZA5coiTARiyljkqtQahFmec4sF5kG4OAy41AjMplGQIwTkUoamtwoK2MbJjICsMDYHmoVi8LuI6y0NlxZaiJq4oRZFVurRaTBiPJEmwPUdms2W1Z5M2b1ch3-3X2Etty--VCR9Bi1yreVPQGHX2anfqe_ANXUrXU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGDEqfNwHmtpqxaaCkEL3SrHdlAEpBWkDPx6zk5aBGJgs6xTbNlW7vvs--4QumBa6QpIgjghZcSL0oAkLAWqErDIBQgtha_FyfHI70-86ymb1tDlWgujlDLBZ8rSTfOWL-diqa_KWgDNI2BUG2iTaTFuqdaqZL82jVrtQTtmQAkY8D7HtirzH3VTjNvo7aB4NWAZLfJsLYvEEp-_cjH-d0a7qPkt0MO3a9ezh2oqb6CPR260k7p-JeloXAhmpA1uSmKjsyX35qYemyLM71wfPdyZv_Ishy6-KB_lMaBY3C2L--C7VXgRtHku8UP2lL3oz-Iu_BpK1WMTTXrd8VWfVGUVSAZsoiC-dFyPum7AuB0I307S1FXMTwRAB50bh0o_CSIHqHHoRwG1ZSq5Cjxlh4EDcMF191E9n-fqAGEuhGRcUelQ6YWu4p5SwncEGFEWCnmIGnrNZosyc8asWq6jv7vP0VZ_HA9nw8Ho5hht6z00gSPRCaoXb0t1Cu6_SM7Mrn8BCt-wvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=Wasserstein-Distance-Based+Multi-Source+Adversarial+Domain+Adaptation+for+Emotion+Recognition+and+Vigilance+Estimation&rft.au=Luo%2C+Yun&rft.au=Lu%2C+Bao-Liang&rft.date=2021-12-09&rft.pub=IEEE&rft.spage=1424&rft.epage=1428&rft_id=info:doi/10.1109%2FBIBM52615.2021.9669383&rft.externalDocID=9669383