Wasserstein-Distance-Based Multi-Source Adversarial Domain Adaptation for Emotion Recognition and Vigilance Estimation
To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification an...
Saved in:
Published in | 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 1424 - 1428 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.12.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/BIBM52615.2021.9669383 |
Cover
Loading…
Abstract | To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification and regression problems. Based on our bound, we propose two novel Wasserstein-distance-based multi-source adversarial domain adaptation methods (wMADA) for learning domain invariant and task discriminative domain mappings by dynamically aligning different domain mappings. We evaluate our methods on two typical EEG datasets. The experimental results demonstrate that our wMADA methods successfully handle the multi-source domain shift problem in creating subject-independent affective models and outperform the state-of-the-art domain adaptation methods. |
---|---|
AbstractList | To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual differences in EEG data. In this paper, we prove a new generalization bound based on Wasserstein distance for multi-source classification and regression problems. Based on our bound, we propose two novel Wasserstein-distance-based multi-source adversarial domain adaptation methods (wMADA) for learning domain invariant and task discriminative domain mappings by dynamically aligning different domain mappings. We evaluate our methods on two typical EEG datasets. The experimental results demonstrate that our wMADA methods successfully handle the multi-source domain shift problem in creating subject-independent affective models and outperform the state-of-the-art domain adaptation methods. |
Author | Luo, Yun Lu, Bao-Liang |
Author_xml | – sequence: 1 givenname: Yun surname: Luo fullname: Luo, Yun email: angeleader@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China – sequence: 2 givenname: Bao-Liang surname: Lu fullname: Lu, Bao-Liang email: bllu@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China |
BookMark | eNotkM1qwzAQhFVoD22aJygUvYBTrRRL1jE_bhpIKPT3GGRrHQS2FCwl0Levm2YvOww738DekWsfPBLyCGwCwPTTfD3f5lxCPuGMw0RLqUUhrshYqwKkzKcMuMxvyenbxIh9TOh8tnQxGV9jNjcRLd0e2-Sy93Dsa6QzexrOTO9MS5ehM84Pljkkk1zwtAk9Lbtw1m9Yh713Z228pV9u79o_LC1jct05cE9uGtNGHF_2iHw-lx-Ll2zzulovZpvMARQpk5aLKRNC5QZULaFqGoG5rGqmgRdMMSsrpXkxjNSKgW2sQTVFKBTnDIQYkYd_rkPE3aEf6vuf3eUb4hf2Vlq9 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BIBM52615.2021.9669383 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665401265 1665401265 |
EndPage | 1428 |
ExternalDocumentID | 9669383 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-6d23403375a17c61bff3e56bc09128070d6b792888869701dfdae74e187220133 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:40 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-6d23403375a17c61bff3e56bc09128070d6b792888869701dfdae74e187220133 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9669383 |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec.-9 |
PublicationDateYYYYMMDD | 2021-12-09 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
PublicationTitleAbbrev | BIBM |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7811364 |
Snippet | To build a subject-independent affective model based on electroencephalography (EEG) is a challenging task due to the domain shift problem caused by individual... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1424 |
SubjectTerms | Affective brain-computer interface Brain modeling Buildings Conferences Data models EEG-based emotion recognition EEG-based vigilance estimation Electroencephalography Emotion recognition Estimation multisource domain adaptation |
Title | Wasserstein-Distance-Based Multi-Source Adversarial Domain Adaptation for Emotion Recognition and Vigilance Estimation |
URI | https://ieeexplore.ieee.org/document/9669383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCbbTp7UbMbf4eBROloKtNe5LdNkxqjT3RYK1Cxqt2jnwb_eB-1mNB68EfJSCJC-74P3vYfQGXdKV0ASJEooJ3GaS5LxHKiK5CkDCG20cOLk8bUYTeKrKZ820PlGC2Ot9cFnNnBN_5ZvFnrlrsq6AM1TYFRN1ATiVmm1atFvSNNu77I35kAIOLC-KAxq4x9VU7zTGG6j8Xq4KlbkOViVWaA_f2Vi_O98dlDnW56HbzaOZxc1bNFGH4_KKydd9UrSd6gQzEgPnJTBXmVL7vw9PfYlmN-VO3i4v3hV8wK61LJ6kseAYfGgKu2Db9fBRdBWhcEP86f5i_ssHsCPodI8dtBkOLi_GJG6qAKZA5coiTARiyljkqtQahFmec4sF5kG4OAy41AjMplGQIwTkUoamtwoK2MbJjICsMDYHmoVi8LuI6y0NlxZaiJq4oRZFVurRaTBiPJEmwPUdms2W1Z5M2b1ch3-3X2Etty--VCR9Bi1yreVPQGHX2anfqe_ANXUrXU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGDEqfNwHmtpqxaaCkEL3SrHdlAEpBWkDPx6zk5aBGJgs6xTbNlW7vvs--4QumBa6QpIgjghZcSL0oAkLAWqErDIBQgtha_FyfHI70-86ymb1tDlWgujlDLBZ8rSTfOWL-diqa_KWgDNI2BUG2iTaTFuqdaqZL82jVrtQTtmQAkY8D7HtirzH3VTjNvo7aB4NWAZLfJsLYvEEp-_cjH-d0a7qPkt0MO3a9ezh2oqb6CPR260k7p-JeloXAhmpA1uSmKjsyX35qYemyLM71wfPdyZv_Ishy6-KB_lMaBY3C2L--C7VXgRtHku8UP2lL3oz-Iu_BpK1WMTTXrd8VWfVGUVSAZsoiC-dFyPum7AuB0I307S1FXMTwRAB50bh0o_CSIHqHHoRwG1ZSq5Cjxlh4EDcMF191E9n-fqAGEuhGRcUelQ6YWu4p5SwncEGFEWCnmIGnrNZosyc8asWq6jv7vP0VZ_HA9nw8Ho5hht6z00gSPRCaoXb0t1Cu6_SM7Mrn8BCt-wvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=Wasserstein-Distance-Based+Multi-Source+Adversarial+Domain+Adaptation+for+Emotion+Recognition+and+Vigilance+Estimation&rft.au=Luo%2C+Yun&rft.au=Lu%2C+Bao-Liang&rft.date=2021-12-09&rft.pub=IEEE&rft.spage=1424&rft.epage=1428&rft_id=info:doi/10.1109%2FBIBM52615.2021.9669383&rft.externalDocID=9669383 |