An Improved Pre-processing Machine Learning Approach for Cross-Sectional MR Imaging of Demented Older Adults

Data pre-processing is the foremost step employed in building any machine learning (ML) model. It has a significant effect on the generalization performance of the model. In the present study, we have attempted to present the data pre-processing techniques for analysis of cross-sectional Magnetic Re...

Full description

Saved in:
Bibliographic Details
Published in2019 First International Conference of Intelligent Computing and Engineering (ICOICE) pp. 1 - 7
Main Authors Khan, Afreen, Zubair, Swaleha, Al Sabri, Muaadhabdo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data pre-processing is the foremost step employed in building any machine learning (ML) model. It has a significant effect on the generalization performance of the model. In the present study, we have attempted to present the data pre-processing techniques for analysis of cross-sectional Magnetic Resonance Imaging (MRI) data of demented and non-demented older adults. The MRI dataset consists of 434 MR sessions of 416 subjects, aged between 18 to 96 years. Before performing classification of MRI data and its pattern analysis, characteristics of the dataset, such as sampling, imbalanced dataset, missing values, outliers, incompleteness, and the presence of irrelevant features, had been addressed. We involved ten major steps to process dataset for the ML model building. Experimental results on the cross-sectional data indicated a significant relative improvement in the pattern analysis achieved by doing PCA (Principal Component Analysis). Pattern analysis employing PCA resulted in noteworthy advancement in pattern recognition with an explained variance of 0.97377.
AbstractList Data pre-processing is the foremost step employed in building any machine learning (ML) model. It has a significant effect on the generalization performance of the model. In the present study, we have attempted to present the data pre-processing techniques for analysis of cross-sectional Magnetic Resonance Imaging (MRI) data of demented and non-demented older adults. The MRI dataset consists of 434 MR sessions of 416 subjects, aged between 18 to 96 years. Before performing classification of MRI data and its pattern analysis, characteristics of the dataset, such as sampling, imbalanced dataset, missing values, outliers, incompleteness, and the presence of irrelevant features, had been addressed. We involved ten major steps to process dataset for the ML model building. Experimental results on the cross-sectional data indicated a significant relative improvement in the pattern analysis achieved by doing PCA (Principal Component Analysis). Pattern analysis employing PCA resulted in noteworthy advancement in pattern recognition with an explained variance of 0.97377.
Author Al Sabri, Muaadhabdo
Zubair, Swaleha
Khan, Afreen
Author_xml – sequence: 1
  givenname: Afreen
  surname: Khan
  fullname: Khan, Afreen
  organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India
– sequence: 2
  givenname: Swaleha
  surname: Zubair
  fullname: Zubair, Swaleha
  organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India
– sequence: 3
  givenname: Muaadhabdo
  surname: Al Sabri
  fullname: Al Sabri, Muaadhabdo
  organization: Aligarh Muslim University,Department of Computer Science,Aligarh,India
BookMark eNotkM1OwzAQhI0EByh9Ai5-gQRv7MTOMQoFIqUK4udcufamREqcyg5IvD2uWu1hVjOj7zB35NrNDgmhwFIAVj42ddfUG6EEqDRjUKYl4zkU4oqsS6lAZgqEUJLdkrFytJmOfv5FS988JvE1GMLgDnSrzffgkLaovTsZ1TGm0aT97Gnt5xCSDzTLMDs90u17BOnDqTf39AkndEtkdqNFTyv7My7hntz0egy4vuiKfD1vPuvXpO1emrpqkwFALUnBWbaXoACtjJdnuSoysDY3miFyDjEWWOSGSbSKIxelsGJvOErOSiP5ijycuQMi7o5-mLT_21024P-8gFb6
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOICE48418.2019.9035164
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728144870
1728144876
EndPage 7
ExternalDocumentID 9035164
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-6302b7181ed7d7d5258621dd5ca0ee33102b4e65c07ed83e3494d4bc3e7309c73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:11 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-6302b7181ed7d7d5258621dd5ca0ee33102b4e65c07ed83e3494d4bc3e7309c73
PageCount 7
ParticipantIDs ieee_primary_9035164
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 First International Conference of Intelligent Computing and Engineering (ICOICE)
PublicationTitleAbbrev ICOICE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7294139
Snippet Data pre-processing is the foremost step employed in building any machine learning (ML) model. It has a significant effect on the generalization performance of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biomedical imaging
cross-sectional
Data models
data preprocessing
Delays
Dementia
Libraries
Machine learning
Magnetic resonance imaging
MRI
Title An Improved Pre-processing Machine Learning Approach for Cross-Sectional MR Imaging of Demented Older Adults
URI https://ieeexplore.ieee.org/document/9035164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XdKk7XocdWMT6kQd7Dba5FVE6YZ2F_96X9JuoniQXkIb0pKEfu-9fO97hFzxUIexMCHTuUIHRYJmuVQZQyTJeFwUQZTZgH56F07m6nYRLFrkepcLAwCOfAaebbqzfLPSGxsq68f22CtUbdJGx63O1dqSc3jcnyazaTJSAyUcZSv2mu4_6qY42Bjvk3T7wpot8uptqtzTn7-0GP_7RQek952gR-930HNIWlB2yduwpHWMAAw-BbaukwCwB00dZxJoI6f6TIeNljhFo5UmFirZo2Nl4cai6QMO5MoX0VVBb1wEEcec2YredGgVOz56ZD4ePSUT1hRTYC_oQ1QslNzPEYgEmAivwA_QlxHGBDrjABKtPD9XEAaaR2AGEqxsjVG5loD_gFhH8oh0ylUJx4RyYQKeCV1kEVeiUFkBaBhKdPRMpH0YnJCunanlutbLWDaTdPr37TOyZ1erpoick071voELBPoqv3Qr_AVdOanL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhJzWb8bQ8e7VZogXFccMumYzO6Jbst0D6M0bBF2cW_3tfCNBoPhguhpZCW8L33-r3vEXLFfeWHjvaZSiU6KAIUS4VMGCJJwsMs84LEBPTjsT-Yydu5N6-R669cGACw5DNomVO7l6-Xam1CZe3QbHv5cotsI-57bpmttaHn8LA9jCbDqCc70rGkrbBV3fCjcooFjv4eiTePLPkiL611kbbUxy81xv--0z5pfqfo0fsv8DkgNcgb5LWb0zJKABpbga3KNADsQWPLmgRaCao-0W6lJk7RbKWRAUv2aHlZ-GnR-AEHsgWM6DKjNzaGiGNOTE1v2jWaHe9NMuv3ptGAVeUU2DN6EQXzBXdThCIHdICH53rozThaeyrhAALtPDeV4HuKB6A7AoxwjZapEoB_gVAF4pDU82UOR4RyR3s8cVSWBFw6mUwyQNNQoKunA-VC55g0zEwtVqVixqKapJO_L1-SncE0Hi1Gw_HdKdk1K1cSRs5IvXhbwznCfpFe2NX-BGk5rRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+First+International+Conference+of+Intelligent+Computing+and+Engineering+%28ICOICE%29&rft.atitle=An+Improved+Pre-processing+Machine+Learning+Approach+for+Cross-Sectional+MR+Imaging+of+Demented+Older+Adults&rft.au=Khan%2C+Afreen&rft.au=Zubair%2C+Swaleha&rft.au=Al+Sabri%2C+Muaadhabdo&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICOICE48418.2019.9035164&rft.externalDocID=9035164