Extreme Gradient Boosting Classification of Motor Imagery using Common Spatial Patterns
Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor...
Saved in:
Published in | Annual IEEE India Conference pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2325-9418 |
DOI | 10.1109/INDICON49873.2020.9342132 |
Cover
Loading…
Abstract | Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor imagery which is widely used in binary motor imagery classification tasks. However, this technique is highly subjects specific and relies on identifying the subject-specific frequency bands from which highly discriminative features can be extracted for the classification of EEG signals. This paper proposes a pipeline for motor imagery classification from EEG signals based on CSP features and Extreme Gradient Boosting (XGBoost) classification that eliminates the need for frequency band selection and is robust to random noise in the recorded signals. We achieve an average Kappa score of 0.59 and an average accuracy of 69.2 percent across all nine subjects of the evaluation set in the BCI Competition 2008-Graz dataset A. |
---|---|
AbstractList | Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor imagery which is widely used in binary motor imagery classification tasks. However, this technique is highly subjects specific and relies on identifying the subject-specific frequency bands from which highly discriminative features can be extracted for the classification of EEG signals. This paper proposes a pipeline for motor imagery classification from EEG signals based on CSP features and Extreme Gradient Boosting (XGBoost) classification that eliminates the need for frequency band selection and is robust to random noise in the recorded signals. We achieve an average Kappa score of 0.59 and an average accuracy of 69.2 percent across all nine subjects of the evaluation set in the BCI Competition 2008-Graz dataset A. |
Author | Kashyap, Amith Vijay, Malaika Krupa, Niranjana Mohanty, Shruti Mohan, Rajasekar Nagarkatti, Aushim |
Author_xml | – sequence: 1 givenname: Malaika surname: Vijay fullname: Vijay, Malaika email: malaika.vijay@gmail.com organization: PES University,Dept. of CSE,Bengaluru,India – sequence: 2 givenname: Amith surname: Kashyap fullname: Kashyap, Amith email: amith2507@gmail.com organization: PES University,Dept. of ECE,Bengaluru,India – sequence: 3 givenname: Aushim surname: Nagarkatti fullname: Nagarkatti, Aushim email: aush281@gmail.com organization: PES University,Dept. of ECE,Bengaluru,India – sequence: 4 givenname: Shruti surname: Mohanty fullname: Mohanty, Shruti email: shrutimohanty998@gmail.com organization: PES University,Dept. of ECE,Bengaluru,India – sequence: 5 givenname: Rajasekar surname: Mohan fullname: Mohan, Rajasekar email: rajasekarmohan@pes.edu organization: PES University,Dept. of ECE,Bengaluru,India – sequence: 6 givenname: Niranjana surname: Krupa fullname: Krupa, Niranjana email: bnkrupa@pes.edu organization: PES University,Dept. of ECE,Bengaluru,India |
BookMark | eNot0M1OAjEcBPBqNBGQJ_BSH2Cx_3bb3R51RdwEwUSN3kjpB6lht6Qtiby9RDnNYX6ZwwzRRR96i9AtkAkAkXft4rFtlotS1hWbUELJRLKSAqNnaAgVrUFIEF_naEAZ5YUsob5C45S-CTlaAsDLAfqc_uRoO4tnURlv-4wfQkjZ9xvcbFVK3nmtsg89Dg6_hBwibju1sfGA9-lPha47tm-7o1Jb_KpytrFP1-jSqW2y41OO0MfT9L15LubLWdvczwsPUOeCa-6IK5kUQrjKrI1jtZHAhDFMV1SBroC7UgvHudZrUlFjJK1UvZa2ZI6zEbr53_XW2tUu-k7Fw-r0A_sFkSJWRA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/INDICON49873.2020.9342132 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 172816916X 9781728169163 |
EISSN | 2325-9418 |
EndPage | 5 |
ExternalDocumentID | 9342132 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i118t-5c5f0f439666f7dbdf38d9136dd3c72a1c715f4c6f55ccb072dd927a8b9e43f53 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 05:52:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-5c5f0f439666f7dbdf38d9136dd3c72a1c715f4c6f55ccb072dd927a8b9e43f53 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9342132 |
PublicationCentury | 2000 |
PublicationDate | 2020-Dec.-10 |
PublicationDateYYYYMMDD | 2020-12-10 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Annual IEEE India Conference |
PublicationTitleAbbrev | INDICON |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002001154 |
Score | 1.7450726 |
Snippet | Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Boosting Brain Computer Interface Brain modeling Brain-computer interfaces Common Spatial Patterns Computational modeling EEG Electroencephalography Extreme Gradient Boosting Feature extraction Motor Imagery Pipelines |
Title | Extreme Gradient Boosting Classification of Motor Imagery using Common Spatial Patterns |
URI | https://ieeexplore.ieee.org/document/9342132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AB6MXH2B8pyYe3WXZtpReRRBMQA4SuZHtKzHGXQNLov562-6Kj3jwtml2k6Yz3ek3_eYbgAsW2SAgjA5YEluAEkckEEqIgLMk4YQLR6t0bItxezAltzM6q8DluhZGa-3JZzp0j_4uX2Vy5VJlTY5JbNFTFarWzYparXU-JS6UZTbgvJTRbA7H18Pu3ZhYVI0tEIyjsPz-RyMVH0f62zD6nEFBH3kKV7kI5fsvccb_TnEHGl8Ve2iyjkW7UNHpHmx9Exusw0PvNXfJQHSz8DSvHF1l2dKxnpHvjOk4Q95MKDNolFksjobPTuHiDTlyvH0rcz6LXBNj67Ro4pU502UDpv3efXcQlG0VgkeLJvKASmoiYw8iFrkYpoQyuKN4C7eVwpLFSUuyFjVEtg2lUoqIxUrxmCUdwTXBhuJ9qKVZqg8AKSOp5FQJu7OJlvaHpV1RCMEssSdLSQ6h7pZo_lIoZ8zL1Tn6e_gYNp2ZHFmkFZ1ALV-s9KkN-bk487b-AIlsq_k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIrFcWFrEjpE4kjSLXTdXSksDbeihFb1V8SYhRILaVAK-HjsJZREHbpEVRZbHzswbv3kDcEEd7QSYkhaNPQ1QPAdbTDBmBTSOAxwwQ6s0bIuo2Rvj2wmZVOByWQsjpczJZ9I2j_ldvkj5wqTKGoGPPY2eVmBV-31MimqtZUbFK7Rl1uC8FNJshNF12L6PsMbVvoaCnmOXX_jRSiX3JN0tGHzOoSCQPNmLjNn8_Zc8438nuQ31r5o9NFx6ox2oyGQXNr_JDdbgofOamXQgupnlRK8MXaXp3PCeUd4b07CGckOhVKFBqtE4Cp-NxsUbMvR4_VZqdi0ybYz1tkXDXJszmddh3O2M2j2rbKxgPWo8kVmEE-UoHYpo7KKoYEL5LRG4flMIn1Mvdjl1icK8qQjhnDnUEyLwaNxigcS-Iv4eVJM0kfuAhOKEB0Qwfbax5PqXJU1ZCPZprGNLjg-gZpZo-lJoZ0zL1Tn8e_gM1nujQX_aD6O7I9gwJjPUEdc5hmo2W8gTHQBk7DS3-we5Zq9G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Annual+IEEE+India+Conference&rft.atitle=Extreme+Gradient+Boosting+Classification+of+Motor+Imagery+using+Common+Spatial+Patterns&rft.au=Vijay%2C+Malaika&rft.au=Kashyap%2C+Amith&rft.au=Nagarkatti%2C+Aushim&rft.au=Mohanty%2C+Shruti&rft.date=2020-12-10&rft.pub=IEEE&rft.eissn=2325-9418&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINDICON49873.2020.9342132&rft.externalDocID=9342132 |