Extreme Gradient Boosting Classification of Motor Imagery using Common Spatial Patterns

Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor...

Full description

Saved in:
Bibliographic Details
Published inAnnual IEEE India Conference pp. 1 - 5
Main Authors Vijay, Malaika, Kashyap, Amith, Nagarkatti, Aushim, Mohanty, Shruti, Mohan, Rajasekar, Krupa, Niranjana
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.12.2020
Subjects
Online AccessGet full text
ISSN2325-9418
DOI10.1109/INDICON49873.2020.9342132

Cover

Loading…
Abstract Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor imagery which is widely used in binary motor imagery classification tasks. However, this technique is highly subjects specific and relies on identifying the subject-specific frequency bands from which highly discriminative features can be extracted for the classification of EEG signals. This paper proposes a pipeline for motor imagery classification from EEG signals based on CSP features and Extreme Gradient Boosting (XGBoost) classification that eliminates the need for frequency band selection and is robust to random noise in the recorded signals. We achieve an average Kappa score of 0.59 and an average accuracy of 69.2 percent across all nine subjects of the evaluation set in the BCI Competition 2008-Graz dataset A.
AbstractList Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in brain activity. We employ the Common Spatial Patterns (CSP) algorithm to transform electroencephalogram (EEG) signals corresponding to motor imagery which is widely used in binary motor imagery classification tasks. However, this technique is highly subjects specific and relies on identifying the subject-specific frequency bands from which highly discriminative features can be extracted for the classification of EEG signals. This paper proposes a pipeline for motor imagery classification from EEG signals based on CSP features and Extreme Gradient Boosting (XGBoost) classification that eliminates the need for frequency band selection and is robust to random noise in the recorded signals. We achieve an average Kappa score of 0.59 and an average accuracy of 69.2 percent across all nine subjects of the evaluation set in the BCI Competition 2008-Graz dataset A.
Author Kashyap, Amith
Vijay, Malaika
Krupa, Niranjana
Mohanty, Shruti
Mohan, Rajasekar
Nagarkatti, Aushim
Author_xml – sequence: 1
  givenname: Malaika
  surname: Vijay
  fullname: Vijay, Malaika
  email: malaika.vijay@gmail.com
  organization: PES University,Dept. of CSE,Bengaluru,India
– sequence: 2
  givenname: Amith
  surname: Kashyap
  fullname: Kashyap, Amith
  email: amith2507@gmail.com
  organization: PES University,Dept. of ECE,Bengaluru,India
– sequence: 3
  givenname: Aushim
  surname: Nagarkatti
  fullname: Nagarkatti, Aushim
  email: aush281@gmail.com
  organization: PES University,Dept. of ECE,Bengaluru,India
– sequence: 4
  givenname: Shruti
  surname: Mohanty
  fullname: Mohanty, Shruti
  email: shrutimohanty998@gmail.com
  organization: PES University,Dept. of ECE,Bengaluru,India
– sequence: 5
  givenname: Rajasekar
  surname: Mohan
  fullname: Mohan, Rajasekar
  email: rajasekarmohan@pes.edu
  organization: PES University,Dept. of ECE,Bengaluru,India
– sequence: 6
  givenname: Niranjana
  surname: Krupa
  fullname: Krupa, Niranjana
  email: bnkrupa@pes.edu
  organization: PES University,Dept. of ECE,Bengaluru,India
BookMark eNot0M1OAjEcBPBqNBGQJ_BSH2Cx_3bb3R51RdwEwUSN3kjpB6lht6Qtiby9RDnNYX6ZwwzRRR96i9AtkAkAkXft4rFtlotS1hWbUELJRLKSAqNnaAgVrUFIEF_naEAZ5YUsob5C45S-CTlaAsDLAfqc_uRoO4tnURlv-4wfQkjZ9xvcbFVK3nmtsg89Dg6_hBwibju1sfGA9-lPha47tm-7o1Jb_KpytrFP1-jSqW2y41OO0MfT9L15LubLWdvczwsPUOeCa-6IK5kUQrjKrI1jtZHAhDFMV1SBroC7UgvHudZrUlFjJK1UvZa2ZI6zEbr53_XW2tUu-k7Fw-r0A_sFkSJWRA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INDICON49873.2020.9342132
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 172816916X
9781728169163
EISSN 2325-9418
EndPage 5
ExternalDocumentID 9342132
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-5c5f0f439666f7dbdf38d9136dd3c72a1c715f4c6f55ccb072dd927a8b9e43f53
IEDL.DBID RIE
IngestDate Wed Aug 27 05:52:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-5c5f0f439666f7dbdf38d9136dd3c72a1c715f4c6f55ccb072dd927a8b9e43f53
PageCount 5
ParticipantIDs ieee_primary_9342132
PublicationCentury 2000
PublicationDate 2020-Dec.-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.-10
  day: 10
PublicationDecade 2020
PublicationTitle Annual IEEE India Conference
PublicationTitleAbbrev INDICON
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002001154
Score 1.7450726
Snippet Brain Computer Interfaces (BCI) based on motor imagery are used to discriminate between various classes of mentally simulated movement by modelling changes in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Boosting
Brain Computer Interface
Brain modeling
Brain-computer interfaces
Common Spatial Patterns
Computational modeling
EEG
Electroencephalography
Extreme Gradient Boosting
Feature extraction
Motor Imagery
Pipelines
Title Extreme Gradient Boosting Classification of Motor Imagery using Common Spatial Patterns
URI https://ieeexplore.ieee.org/document/9342132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AB6MXH2B8pyYe3WXZtpReRRBMQA4SuZHtKzHGXQNLov562-6Kj3jwtml2k6Yz3ek3_eYbgAsW2SAgjA5YEluAEkckEEqIgLMk4YQLR6t0bItxezAltzM6q8DluhZGa-3JZzp0j_4uX2Vy5VJlTY5JbNFTFarWzYparXU-JS6UZTbgvJTRbA7H18Pu3ZhYVI0tEIyjsPz-RyMVH0f62zD6nEFBH3kKV7kI5fsvccb_TnEHGl8Ve2iyjkW7UNHpHmx9Exusw0PvNXfJQHSz8DSvHF1l2dKxnpHvjOk4Q95MKDNolFksjobPTuHiDTlyvH0rcz6LXBNj67Ro4pU502UDpv3efXcQlG0VgkeLJvKASmoiYw8iFrkYpoQyuKN4C7eVwpLFSUuyFjVEtg2lUoqIxUrxmCUdwTXBhuJ9qKVZqg8AKSOp5FQJu7OJlvaHpV1RCMEssSdLSQ6h7pZo_lIoZ8zL1Tn6e_gYNp2ZHFmkFZ1ALV-s9KkN-bk487b-AIlsq_k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIrFcWFrEjpE4kjSLXTdXSksDbeihFb1V8SYhRILaVAK-HjsJZREHbpEVRZbHzswbv3kDcEEd7QSYkhaNPQ1QPAdbTDBmBTSOAxwwQ6s0bIuo2Rvj2wmZVOByWQsjpczJZ9I2j_ldvkj5wqTKGoGPPY2eVmBV-31MimqtZUbFK7Rl1uC8FNJshNF12L6PsMbVvoaCnmOXX_jRSiX3JN0tGHzOoSCQPNmLjNn8_Zc8438nuQ31r5o9NFx6ox2oyGQXNr_JDdbgofOamXQgupnlRK8MXaXp3PCeUd4b07CGckOhVKFBqtE4Cp-NxsUbMvR4_VZqdi0ybYz1tkXDXJszmddh3O2M2j2rbKxgPWo8kVmEE-UoHYpo7KKoYEL5LRG4flMIn1Mvdjl1icK8qQjhnDnUEyLwaNxigcS-Iv4eVJM0kfuAhOKEB0Qwfbax5PqXJU1ZCPZprGNLjg-gZpZo-lJoZ0zL1Tn8e_gM1nujQX_aD6O7I9gwJjPUEdc5hmo2W8gTHQBk7DS3-we5Zq9G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Annual+IEEE+India+Conference&rft.atitle=Extreme+Gradient+Boosting+Classification+of+Motor+Imagery+using+Common+Spatial+Patterns&rft.au=Vijay%2C+Malaika&rft.au=Kashyap%2C+Amith&rft.au=Nagarkatti%2C+Aushim&rft.au=Mohanty%2C+Shruti&rft.date=2020-12-10&rft.pub=IEEE&rft.eissn=2325-9418&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINDICON49873.2020.9342132&rft.externalDocID=9342132