Smart Seed Classification System based on MobileNetV2 Architecture

The agricultural transformation in the last decade using artificial intelligence has led to significant gains in productivity and profitability. The traditional machine learning approaches present inherent limitations in extracting features and information from image data. Deep learning techniques,...

Full description

Saved in:
Bibliographic Details
Published in2022 2nd International Conference on Computing and Information Technology (ICCIT) pp. 217 - 222
Main Authors Hamid, Yasir, Wani, Sharyar, Soomro, Arjumand Bano, Alwan, Ali A., Gulzar, Yonis
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.01.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCIT52419.2022.9711662

Cover

Abstract The agricultural transformation in the last decade using artificial intelligence has led to significant gains in productivity and profitability. The traditional machine learning approaches present inherent limitations in extracting features and information from image data. Deep learning techniques, particularly CNN's, help to overcome these limitations due to their multi-level architecture. Various deep learning applications in agriculture include crop disease identification, fruit classification, and germination rate monitoring. Seed image analysis is considered a significant task for the preservation of biodiversity and sustainability. This research uses MobileNetV2, a deep learning convolutional neural network (DCNNs) for seed classification. This model has been preferred due to its simple architecture and memory-efficient characteristics. A total of 14 different classes of seeds were used for the experimentation. The results indicate accuracies of 98% and 95% on training and test sets, respectively.
AbstractList The agricultural transformation in the last decade using artificial intelligence has led to significant gains in productivity and profitability. The traditional machine learning approaches present inherent limitations in extracting features and information from image data. Deep learning techniques, particularly CNN's, help to overcome these limitations due to their multi-level architecture. Various deep learning applications in agriculture include crop disease identification, fruit classification, and germination rate monitoring. Seed image analysis is considered a significant task for the preservation of biodiversity and sustainability. This research uses MobileNetV2, a deep learning convolutional neural network (DCNNs) for seed classification. This model has been preferred due to its simple architecture and memory-efficient characteristics. A total of 14 different classes of seeds were used for the experimentation. The results indicate accuracies of 98% and 95% on training and test sets, respectively.
Author Hamid, Yasir
Alwan, Ali A.
Wani, Sharyar
Soomro, Arjumand Bano
Gulzar, Yonis
Author_xml – sequence: 1
  givenname: Yasir
  surname: Hamid
  fullname: Hamid, Yasir
  email: yasir.hamid@adploy.ac.ae
  organization: Abu Dhabi Polytechnic,Information Security and Engineering Technology,Abudhabi,UAE
– sequence: 2
  givenname: Sharyar
  surname: Wani
  fullname: Wani, Sharyar
  email: sharyarwani@iium.edu.my
  organization: International Islamic University Malaysia,Kulliyyah of Information and Communication Technology,Department of Computer Science,Gombak,Malaysia
– sequence: 3
  givenname: Arjumand Bano
  surname: Soomro
  fullname: Soomro, Arjumand Bano
  email: asoomro@kfu.edu.sa
  organization: College of Business Administration, King Faisal University,Department of Management Information Systems,Al-Ahsa,Saudi Arabia
– sequence: 4
  givenname: Ali A.
  surname: Alwan
  fullname: Alwan, Ali A.
  email: aaljuboo@rampo.edu
  organization: School of Theoretical and Applied Science, Ramapo College of New Jersey,Mahwah,New Jersey,USA
– sequence: 5
  givenname: Yonis
  surname: Gulzar
  fullname: Gulzar, Yonis
  email: ygulzar@kfu.edu.sa
  organization: College of Business Administration, King Faisal University,Department of Management Information Systems,Al-Ahsa,Saudi Arabia
BookMark eNotj71OwzAUhY0EAy19Agb8Agm-N7aTjMXiJ1KhQwpr5TjXwlKaoMQMfXss0enT0ZHOz4pdj9NIjD2AyAFE_dgY0xwUSqhzFIh5XQJojVdslaBkoYXEW_bUnuwceUvUczPYZQk-OBvDNPL2vEQ68c4uyUv6ferCQB8Uv5BvZ_cdIrn4O9Mdu_F2WGhz4Zp9vjwfzFu22782ZrvLAkAVMyWRCL1HSF3KSqeccKovZV2W4KVzBKAq2XdCWNtTLaWmyheCvC505fpize7_cwMRHX_mkJafj5dbxR8nKkhU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIT52419.2022.9711662
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISBN 1665436042
9781665436045
1665436050
9781665436052
EndPage 222
ExternalDocumentID 9711662
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-542ee2ff21eed5a4c5c0c5d749771f4cce11584db00aade9446e8f30ef6368cd3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-542ee2ff21eed5a4c5c0c5d749771f4cce11584db00aade9446e8f30ef6368cd3
PageCount 6
ParticipantIDs ieee_primary_9711662
PublicationCentury 2000
PublicationDate 2022-Jan.-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2022 2nd International Conference on Computing and Information Technology (ICCIT)
PublicationTitleAbbrev ICCIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1058753
Snippet The agricultural transformation in the last decade using artificial intelligence has led to significant gains in productivity and profitability. The...
SourceID ieee
SourceType Publisher
StartPage 217
SubjectTerms Agriculture
Artificial Intelligence
Convolutional Neural Network
Deep learning
Feature extraction
Machine Learning
Memory architecture
MobileNetV2 architecture
Precision Agriculture
Productivity
Profitability
Seed Classification
Training
Title Smart Seed Classification System based on MobileNetV2 Architecture
URI https://ieeexplore.ieee.org/document/9711662
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECa1J734aI3vcPDobhcWtuyxNjatSRuTtqa3ZhkGY4xd02wv_nphd62PePAGZAJkBvhgmAch1yaxkQDBApDKBiKLMNCgMrevOCpl0PBSmTOeJMO5uF_IRYPcbH1hELE0PsPQF8u_fJPDxqvKOmmXscQfuDtumVW-WrXJFovSzqjfH82kQyTvf8J5WFP_SJtSosZgn4w_x6uMRV7CTaFDeP8VivG_Ezog7S__PPqwRZ5D0sDVEdnrPa3rQBrYIrfTV7co6NSR0DLxpTcJKqVAqyDl1OOXoa4-zrU7GiZYPHLa-_av0Cbzwd2sPwzqfAnBs3smFIEUHJFby5nrW2YCJEQgTVe4Ox6zAgDd9U8J43ZalhlM3UsQlY0jtEmcKDDxMWmu8hWeEOp60CAAIY5TIXmmmVUMMp3GRqHS6SlpeW4s36qQGMuaEWd_N5-TXS8Rr7ng8oI0i_UGLx2WF_qqFOIHORShxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECaNHtSLj9b4loNHd7uwsGWPtbFptduYtDW9NQsMxhhb02wv_nqBXesjHrwBIQNhGD4Y5oHQlU5MxBQjgeLCBCyPIJBK5FauKAihQVOvzMmGSW_C7qZ8WkPXa18YAPDGZxC6ov_L1wu1cqqyZtoiJHEH7qbFfcZLb63KaItEabPf6fTH3GKS80ChNKz6_0ic4nGju4uyzxFLc5GXcFXIUL3_Csb43yntocaXhx5-WGPPPqrB_ADttJ-WVSgNqKOb0avdFnhku2Cf-tIZBXk-4DJMOXYIprGtZwtpD4chFI8Ut7_9LDTQpHs77vSCKmNC8GwfCkXAGQWgxlBiafOcKa4ixXWL2VseMUwpsBdAwbSVtTzXkNq3IAgTR2CSOBFKx4doY76YwxHCloJUTIGK45RxmktiBFG5TGMtQMj0GNXdaszeyqAYs2ohTv5uvkRbvXE2mA36w_tTtO244_QYlJ-hjWK5gnOL7IW88Az9AOBmpRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Computing+and+Information+Technology+%28ICCIT%29&rft.atitle=Smart+Seed+Classification+System+based+on+MobileNetV2+Architecture&rft.au=Hamid%2C+Yasir&rft.au=Wani%2C+Sharyar&rft.au=Soomro%2C+Arjumand+Bano&rft.au=Alwan%2C+Ali+A.&rft.date=2022-01-25&rft.pub=IEEE&rft.spage=217&rft.epage=222&rft_id=info:doi/10.1109%2FICCIT52419.2022.9711662&rft.externalDocID=9711662