Machine Learning Techniques for the Energy and Performance Improvement in Network-on-Chip (NoC)
On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to deliver the greatest possible performance, energy, and cost trade-offs. In this regard, a Network-on-Chip architecture with many parallel and speci...
Saved in:
Published in | 2021 4th International Conference on Computing and Communications Technologies (ICCCT) pp. 590 - 595 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.12.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCCT53315.2021.9711872 |
Cover
Abstract | On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to deliver the greatest possible performance, energy, and cost trade-offs. In this regard, a Network-on-Chip architecture with many parallel and specialized cores is one of the most promising (NoC). An architecture parameter that impacts deep neural networks' performance is the number and size of memory interfaces. Using these and other architectural criteria, we investigate the design space that can be created. We demonstrate how on-chip communication dominates delay while memory consumes the majority of energy. According to the findings, a new research area devoted to improving the performance and energy efficiency of on-chip communication fabrics and memory subsystems should be estavlished. |
---|---|
AbstractList | On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to deliver the greatest possible performance, energy, and cost trade-offs. In this regard, a Network-on-Chip architecture with many parallel and specialized cores is one of the most promising (NoC). An architecture parameter that impacts deep neural networks' performance is the number and size of memory interfaces. Using these and other architectural criteria, we investigate the design space that can be created. We demonstrate how on-chip communication dominates delay while memory consumes the majority of energy. According to the findings, a new research area devoted to improving the performance and energy efficiency of on-chip communication fabrics and memory subsystems should be estavlished. |
Author | Majji, Sankararao Hemavathi, S Shunmugam, Anandaraj Karunakaran, S RamaDevi, J Pathur Nisha, S |
Author_xml | – sequence: 1 givenname: J surname: RamaDevi fullname: RamaDevi, J email: k.ramakarthik@gmail.com organization: PVP SIDDHARTHA Institute of Technology,CSE Department,Vijayawada,India – sequence: 2 givenname: S surname: Pathur Nisha fullname: Pathur Nisha, S email: thanish05@gmail.com organization: Nehru Institute of Technology,Department of CSE,Coimbatore,India – sequence: 3 givenname: S surname: Karunakaran fullname: Karunakaran, S email: s.karunakaran@vardhaman.org organization: Vardhaman College of Engineering,Department of ECE,Hyderabad,India – sequence: 4 givenname: S surname: Hemavathi fullname: Hemavathi, S email: hemavathi@cecri.res.in organization: Central Electrochemical Research Institute,Scientist Battery Division,Chennai,India – sequence: 5 givenname: Sankararao surname: Majji fullname: Majji, Sankararao email: sankar3267@gmail.com organization: GRIET,Department of ECE,Hyderabad,India – sequence: 6 givenname: Anandaraj surname: Shunmugam fullname: Shunmugam, Anandaraj email: anandboyzz@gmail.com organization: School of CS & IT, DMI-St. John the Baptist University The Republic of Malawi,Central Africa |
BookMark | eNotj8FOhDAURWuiCx3nC1zYpS7AvkJbWJpmHElwdIFrUuB1aJSCHdTM30virG5yc3Jz7hU596NHQm6BxQAsfyi01pVIEhAxZxziXAFkip-Rda4ykFKkkKaKXZL6xbS980hLNME7v6cVtr13X994oHYMdO6RbjyG_ZEa39E3DEs7GN8iLYYpjD84oJ-p83SH8-8YPqLRR7p3E73bjfr-mlxY83nA9SlX5P1pU-nnqHzdFvqxjNwiNkciYTlvVN6atrF5I2TTSmRgsZGcJdwqSDuUUrKMSeDCYscEmkaA7VAtZLIiN_-7DhHrKbjBhGN9up38AauMUqU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCCT53315.2021.9711872 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665414470 1665414472 |
EndPage | 595 |
ExternalDocumentID | 9711872 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-53092b79cacbf9b56bc6e01feb62032f714de6660806125fed05eab51fde76e03 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:29 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-53092b79cacbf9b56bc6e01feb62032f714de6660806125fed05eab51fde76e03 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9711872 |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec.-16 |
PublicationDateYYYYMMDD | 2021-12-16 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2021 4th International Conference on Computing and Communications Technologies (ICCCT) |
PublicationTitleAbbrev | ICCCT |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7818668 |
Snippet | On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 590 |
SubjectTerms | Correlation Deep learning Energy consumption Machine Learning Machine learning algorithms Memory management Network-on-Chip neural network Neural networks Performance evaluation |
Title | Machine Learning Techniques for the Energy and Performance Improvement in Network-on-Chip (NoC) |
URI | https://ieeexplore.ieee.org/document/9711872 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDwomK5dm6Q5l40pbOywwW5jSV51CO3Q7uJf70vabSgevIXyaEJS8r73-r3vEXIv4sRy6FumbWwwQJE40iplkMQWrBI69Drd44kYzZOXBV-0yNO-FgYAPPkMAjf0__JtabYuVdZT0jXHxgv3CD-zularoWxFoeo9Z1k2Q_QScQz7-lHQWP9om-K9xvCEjHfz1WSR92Bb6cB8_ZJi_O-CTkn3UJ9Hp3vPc0ZaUHTIcux5kUAbydRXOtvps35ShKYUoR4d-FI_uiosnR5KBmidWvCZQrou6KTmhrOyYNnbekMfJmX22CXz4WCWjVjTPoGtcVUV43Go-loqszI6V5oLbQSEUQ5auLbpuYwSCxi9IGZ0MCcHG3JYaR7lFiRaxuekXZQFXBCqjdKK89wp6SQQ4_tSowTamVQi3pCXpOM2Z7mpFTKWzb5c_f34mhy7A3KkkEjckHb1sYVbdO2VvvNn-g3HfqZk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSksom_zcGDgu3atUmXc9nYdC07dLBbWZJXHUI7tLv41_vSdhuKB28hPNqQQN73Xr73PULuuedrBn1tSe0pDFACHEkxsMD3NGjBpVPpdEcxH8_95wVbtMjTrhYGACryGdhmWL3l60JtTKqsJwLTHBsv3AP0-z6rq7Ua0pbriN4kDMME8YvLMPDru3Zj_6NxSuU3Rsck2v6xpou825tS2urrlxjjf5d0Qrr7Cj062_meU9KCvEPSqGJGAm1EU19pslVo_aQITimCPTqsiv3oMtd0ti8aoHVyocoV0lVO45odbhW5Fb6t1vQhLsLHLpmPhkk4tpoGCtYKV1VazHNEXwZCLZXMhGRcKg6Om4HkpnF6Fri-BoxfEDUaoJOBdhgsJXMzDQFaemeknRc5nBMqlZCCscxo6fjg4fcGSnC0U4MAEUdwQTpmc9J1rZGRNvty-ff0HTkcJ9E0nU7ilytyZA7LUERcfk3a5ccGbtDRl_K2Ot9vrBapsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+4th+International+Conference+on+Computing+and+Communications+Technologies+%28ICCCT%29&rft.atitle=Machine+Learning+Techniques+for+the+Energy+and+Performance+Improvement+in+Network-on-Chip+%28NoC%29&rft.au=RamaDevi%2C+J&rft.au=Pathur+Nisha%2C+S&rft.au=Karunakaran%2C+S&rft.au=Hemavathi%2C+S&rft.date=2021-12-16&rft.pub=IEEE&rft.spage=590&rft.epage=595&rft_id=info:doi/10.1109%2FICCCT53315.2021.9711872&rft.externalDocID=9711872 |