Efficient One-Shot Video Object Segmentation
Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We pro...
Saved in:
Published in | 2020 7th NAFOSTED Conference on Information and Computer Science (NICS) pp. 320 - 325 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We propose a range of improvements to make OSVOS competitive to newer methods while keeping its simplicity. Specifically, we replace VGG with EfficientNet, and adopt the U-net architecture. We also utilize Focal Loss and Dice Loss to handle the imbalanced binary classification, and finally we remove the boundary snapping module. With our amendments, we achieve 82.4% J&F on DAVIS 2016 validation set, an improvement over the original 80.2% of OSVOS. We also achieve much faster inference time per frame than OSVOS. |
---|---|
AbstractList | Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We propose a range of improvements to make OSVOS competitive to newer methods while keeping its simplicity. Specifically, we replace VGG with EfficientNet, and adopt the U-net architecture. We also utilize Focal Loss and Dice Loss to handle the imbalanced binary classification, and finally we remove the boundary snapping module. With our amendments, we achieve 82.4% J&F on DAVIS 2016 validation set, an improvement over the original 80.2% of OSVOS. We also achieve much faster inference time per frame than OSVOS. |
Author | Hoang-Xuan, Nhat Pham-Le, Thuy-Dung Nguyen, E-Ro Hoang-Nguyen, Khoi |
Author_xml | – sequence: 1 givenname: Nhat surname: Hoang-Xuan fullname: Hoang-Xuan, Nhat email: hxnhat18@apcs.vn organization: Vietnam National University,Ho Chi Minh City,Vietnam – sequence: 2 givenname: E-Ro surname: Nguyen fullname: Nguyen, E-Ro email: nero18@apcs.vn organization: Vietnam National University,Ho Chi Minh City,Vietnam – sequence: 3 givenname: Thuy-Dung surname: Pham-Le fullname: Pham-Le, Thuy-Dung email: pltdung18@apcs.vn organization: Vietnam National University,Ho Chi Minh City,Vietnam – sequence: 4 givenname: Khoi surname: Hoang-Nguyen fullname: Hoang-Nguyen, Khoi email: hnkhoi18@apcs.vn organization: Vietnam National University,Ho Chi Minh City,Vietnam |
BookMark | eNotjstKAzEUQFPQRV9fIMh8gDPmJr25yVKGqoXSWUzptmSaG43YjNRs_HsFuzqLA4czEzd5zCzEPcgGQLrH3abtEZRVjZJKNk5rtCuaiJkkbUEiajsVD-sY0ylxLlWXue7fx1IdUuCx6oYPPpWq57fzn_UljXkhbqP__ObllXOxf17v29d6271s2qdtnQBsqVcGPTllCVkbMDGSUgHBogejXDRaRxUkGSb0EtlQsNKGODgzMJlBz8XdfzYx8_Hrks7-8nO8_utfMwQ-Hg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NICS51282.2020.9335847 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 0738105538 9780738105536 |
EndPage | 325 |
ExternalDocumentID | 9335847 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-465a792875e3616ff722d5185a1629f633f2d076e75a05e67d808dfb96be76b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:09 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-465a792875e3616ff722d5185a1629f633f2d076e75a05e67d808dfb96be76b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9335847 |
PublicationCentury | 2000 |
PublicationDate | 2020-Nov.-26 |
PublicationDateYYYYMMDD | 2020-11-26 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 2020 7th NAFOSTED Conference on Information and Computer Science (NICS) |
PublicationTitleAbbrev | NICS |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8017675 |
Snippet | Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 320 |
SubjectTerms | boundary snapping module removal Computer architecture Computer science convolutional neural nets dice loss focal loss image classification image segmentation imbalanced binary classification Labeling neural net architecture Object segmentation one-shot video object segmentation OSVOS competitive U-net architecture VGG video signal processing |
Title | Efficient One-Shot Video Object Segmentation |
URI | https://ieeexplore.ieee.org/document/9335847 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ0-oYHynB4_s0n203T0TiJoAJqDhRrbtrBLjrjHLxV9v210wGg_emrbpM9Mv05lvBuAGDeRhjImnqEbPRkcx76BEL1CJSvJMMOUs-NMZv32M71ds1YLBnguDiM75DH1bdLZ8Xaqt_SobGuXbWvXa0BZpWnO1GtJvQNPh7G60MPCVWHpVSP2m84-sKQ40Jl2Y7qarfUVe_W0lffX5KxLjf9dzCP1veh552APPEbSwOIbuLj8DacS1B4Oxiw9hxiDzAr3FS1mRp43Gksyl_X4hC3x-a7hHRR-Wk_FydOs12RG8jVEKKi_mLBOpUXgYRjzgeS7CUDNz2FnAwzTnUZSHmgqOgmWUIRc6oYnOZcolCi6jE-gUZYGnQBRjSJViwrTGDvNpJIPMiH7EZBaEZ9Cze1-_1_Ev1s22z_-uvoADe_41X-8SOtXHFq8McFfy2t3YF0iNmAY |
link.rule.ids | 310,311,783,787,792,793,799,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ7UetBT1db4loPH7pZ9ALvnpk2rfZi0mt6ahZ3VxrhrzPbirxfoVqPx4I0AAQYCH8PwzQDcoIY8DDFyFE3RMd5R9Dko0fFUpKIsEUxZC_54wgcP4e2CLWrQ_uLCIKL9fIauSVpbflqotXkq62jl21j1dmBX36sjsWFrVbRfj8adybA70wAWGYKVT92q-o-4KRY2-g0Ybzvc_BZ5cdeldNXHL1-M_x3RAbS-CXrk_gt6DqGG-RE0thEaSLVhm9DuWQ8Rug0yzdGZPRcleVylWJCpNA8wZIZPrxX7KG_BvN-bdwdOFR_BWWm1oHRCzhIRa5WHYcA9nmXC91OmpzvxuB9nPAgyP6WCo2AJZchFGtEozWTMJQoug2Oo50WOJ0AUY0iVYkKXhhb1aSC9RG_-gMnE80-haWRfvm08YCwrsc_-zr6GvcF8PFqOhpO7c9g3a2HYez6_gHr5vsZLDeOlvLKr9wlyb5tZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+7th+NAFOSTED+Conference+on+Information+and+Computer+Science+%28NICS%29&rft.atitle=Efficient+One-Shot+Video+Object+Segmentation&rft.au=Hoang-Xuan%2C+Nhat&rft.au=Nguyen%2C+E-Ro&rft.au=Pham-Le%2C+Thuy-Dung&rft.au=Hoang-Nguyen%2C+Khoi&rft.date=2020-11-26&rft.pub=IEEE&rft.spage=320&rft.epage=325&rft_id=info:doi/10.1109%2FNICS51282.2020.9335847&rft.externalDocID=9335847 |