Efficient One-Shot Video Object Segmentation

Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We pro...

Full description

Saved in:
Bibliographic Details
Published in2020 7th NAFOSTED Conference on Information and Computer Science (NICS) pp. 320 - 325
Main Authors Hoang-Xuan, Nhat, Nguyen, E-Ro, Pham-Le, Thuy-Dung, Hoang-Nguyen, Khoi
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We propose a range of improvements to make OSVOS competitive to newer methods while keeping its simplicity. Specifically, we replace VGG with EfficientNet, and adopt the U-net architecture. We also utilize Focal Loss and Dice Loss to handle the imbalanced binary classification, and finally we remove the boundary snapping module. With our amendments, we achieve 82.4% J&F on DAVIS 2016 validation set, an improvement over the original 80.2% of OSVOS. We also achieve much faster inference time per frame than OSVOS.
AbstractList Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object Segmentation (OSVOS), a simple method that adapts VGG to image segmentation using a structure similar to a Fully Convolutional Network. We propose a range of improvements to make OSVOS competitive to newer methods while keeping its simplicity. Specifically, we replace VGG with EfficientNet, and adopt the U-net architecture. We also utilize Focal Loss and Dice Loss to handle the imbalanced binary classification, and finally we remove the boundary snapping module. With our amendments, we achieve 82.4% J&F on DAVIS 2016 validation set, an improvement over the original 80.2% of OSVOS. We also achieve much faster inference time per frame than OSVOS.
Author Hoang-Xuan, Nhat
Pham-Le, Thuy-Dung
Nguyen, E-Ro
Hoang-Nguyen, Khoi
Author_xml – sequence: 1
  givenname: Nhat
  surname: Hoang-Xuan
  fullname: Hoang-Xuan, Nhat
  email: hxnhat18@apcs.vn
  organization: Vietnam National University,Ho Chi Minh City,Vietnam
– sequence: 2
  givenname: E-Ro
  surname: Nguyen
  fullname: Nguyen, E-Ro
  email: nero18@apcs.vn
  organization: Vietnam National University,Ho Chi Minh City,Vietnam
– sequence: 3
  givenname: Thuy-Dung
  surname: Pham-Le
  fullname: Pham-Le, Thuy-Dung
  email: pltdung18@apcs.vn
  organization: Vietnam National University,Ho Chi Minh City,Vietnam
– sequence: 4
  givenname: Khoi
  surname: Hoang-Nguyen
  fullname: Hoang-Nguyen, Khoi
  email: hnkhoi18@apcs.vn
  organization: Vietnam National University,Ho Chi Minh City,Vietnam
BookMark eNotjstKAzEUQFPQRV9fIMh8gDPmJr25yVKGqoXSWUzptmSaG43YjNRs_HsFuzqLA4czEzd5zCzEPcgGQLrH3abtEZRVjZJKNk5rtCuaiJkkbUEiajsVD-sY0ylxLlWXue7fx1IdUuCx6oYPPpWq57fzn_UljXkhbqP__ObllXOxf17v29d6271s2qdtnQBsqVcGPTllCVkbMDGSUgHBogejXDRaRxUkGSb0EtlQsNKGODgzMJlBz8XdfzYx8_Hrks7-8nO8_utfMwQ-Hg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NICS51282.2020.9335847
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 0738105538
9780738105536
EndPage 325
ExternalDocumentID 9335847
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-465a792875e3616ff722d5185a1629f633f2d076e75a05e67d808dfb96be76b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:09 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-465a792875e3616ff722d5185a1629f633f2d076e75a05e67d808dfb96be76b3
PageCount 6
ParticipantIDs ieee_primary_9335847
PublicationCentury 2000
PublicationDate 2020-Nov.-26
PublicationDateYYYYMMDD 2020-11-26
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-26
  day: 26
PublicationDecade 2020
PublicationTitle 2020 7th NAFOSTED Conference on Information and Computer Science (NICS)
PublicationTitleAbbrev NICS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8017675
Snippet Video object segmentation is the problem of labelling the foreground object of interest that has widespread applications. We reevaluate One-shot Video Object...
SourceID ieee
SourceType Publisher
StartPage 320
SubjectTerms boundary snapping module removal
Computer architecture
Computer science
convolutional neural nets
dice loss
focal loss
image classification
image segmentation
imbalanced binary classification
Labeling
neural net architecture
Object segmentation
one-shot video object segmentation
OSVOS competitive
U-net architecture
VGG
video signal processing
Title Efficient One-Shot Video Object Segmentation
URI https://ieeexplore.ieee.org/document/9335847
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ0-oYHynB4_s0n203T0TiJoAJqDhRrbtrBLjrjHLxV9v210wGg_emrbpM9Mv05lvBuAGDeRhjImnqEbPRkcx76BEL1CJSvJMMOUs-NMZv32M71ds1YLBnguDiM75DH1bdLZ8Xaqt_SobGuXbWvXa0BZpWnO1GtJvQNPh7G60MPCVWHpVSP2m84-sKQ40Jl2Y7qarfUVe_W0lffX5KxLjf9dzCP1veh552APPEbSwOIbuLj8DacS1B4Oxiw9hxiDzAr3FS1mRp43Gksyl_X4hC3x-a7hHRR-Wk_FydOs12RG8jVEKKi_mLBOpUXgYRjzgeS7CUDNz2FnAwzTnUZSHmgqOgmWUIRc6oYnOZcolCi6jE-gUZYGnQBRjSJViwrTGDvNpJIPMiH7EZBaEZ9Cze1-_1_Ev1s22z_-uvoADe_41X-8SOtXHFq8McFfy2t3YF0iNmAY
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ7UetBT1db4loPH7pZ9ALvnpk2rfZi0mt6ahZ3VxrhrzPbirxfoVqPx4I0AAQYCH8PwzQDcoIY8DDFyFE3RMd5R9Dko0fFUpKIsEUxZC_54wgcP4e2CLWrQ_uLCIKL9fIauSVpbflqotXkq62jl21j1dmBX36sjsWFrVbRfj8adybA70wAWGYKVT92q-o-4KRY2-g0Ybzvc_BZ5cdeldNXHL1-M_x3RAbS-CXrk_gt6DqGG-RE0thEaSLVhm9DuWQ8Rug0yzdGZPRcleVylWJCpNA8wZIZPrxX7KG_BvN-bdwdOFR_BWWm1oHRCzhIRa5WHYcA9nmXC91OmpzvxuB9nPAgyP6WCo2AJZchFGtEozWTMJQoug2Oo50WOJ0AUY0iVYkKXhhb1aSC9RG_-gMnE80-haWRfvm08YCwrsc_-zr6GvcF8PFqOhpO7c9g3a2HYez6_gHr5vsZLDeOlvLKr9wlyb5tZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+7th+NAFOSTED+Conference+on+Information+and+Computer+Science+%28NICS%29&rft.atitle=Efficient+One-Shot+Video+Object+Segmentation&rft.au=Hoang-Xuan%2C+Nhat&rft.au=Nguyen%2C+E-Ro&rft.au=Pham-Le%2C+Thuy-Dung&rft.au=Hoang-Nguyen%2C+Khoi&rft.date=2020-11-26&rft.pub=IEEE&rft.spage=320&rft.epage=325&rft_id=info:doi/10.1109%2FNICS51282.2020.9335847&rft.externalDocID=9335847