A novel algorithm of dorsal hand vein image segmentation by integrating matched filter and local binary fitting level set model

The performance of dorsal hand vein image segmentation is limited due to low contrast and intensity inhomogeneity. In this paper, a novel method is proposed by integrating matched filter and local binary fitting level set model with the aim of overcoming the fault or incomplete segmentation in dorsa...

Full description

Saved in:
Bibliographic Details
Published in2020 7th International Conference on Information Science and Control Engineering (ICISCE) pp. 81 - 85
Main Authors Guo, Ziyang, Ma, Yao, Min, Xiaolin, Li, Hui, Liu, Qingyi, Han, Chao, Yang, Guang, Bai, Peirui, Ren, Yande
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of dorsal hand vein image segmentation is limited due to low contrast and intensity inhomogeneity. In this paper, a novel method is proposed by integrating matched filter and local binary fitting level set model with the aim of overcoming the fault or incomplete segmentation in dorsal hand vein image. Following is the main work and contributions of this paper. First, 12-direction matched filters are adopted to enhance the vein patterns. Then, the local binary fitting level set model is introduced to segment the image enhanced by the first step. Third, a spurious vascular removal solution is presented to reduce the interference of metacarpal bones. 380 dorsal hand vein images collected from 69 subjects are used to evaluate the performance of the proposed algorithm. Compared with 5 existing vein segmentation methods, the proposed method achieves superior accuracy and shows great potential in image segmentation.
AbstractList The performance of dorsal hand vein image segmentation is limited due to low contrast and intensity inhomogeneity. In this paper, a novel method is proposed by integrating matched filter and local binary fitting level set model with the aim of overcoming the fault or incomplete segmentation in dorsal hand vein image. Following is the main work and contributions of this paper. First, 12-direction matched filters are adopted to enhance the vein patterns. Then, the local binary fitting level set model is introduced to segment the image enhanced by the first step. Third, a spurious vascular removal solution is presented to reduce the interference of metacarpal bones. 380 dorsal hand vein images collected from 69 subjects are used to evaluate the performance of the proposed algorithm. Compared with 5 existing vein segmentation methods, the proposed method achieves superior accuracy and shows great potential in image segmentation.
Author Ren, Yande
Min, Xiaolin
Yang, Guang
Liu, Qingyi
Li, Hui
Han, Chao
Bai, Peirui
Guo, Ziyang
Ma, Yao
Author_xml – sequence: 1
  givenname: Ziyang
  surname: Guo
  fullname: Guo, Ziyang
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 2
  givenname: Yao
  surname: Ma
  fullname: Ma, Yao
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 3
  givenname: Xiaolin
  surname: Min
  fullname: Min, Xiaolin
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 4
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 5
  givenname: Qingyi
  surname: Liu
  fullname: Liu, Qingyi
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 6
  givenname: Chao
  surname: Han
  fullname: Han, Chao
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 7
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 8
  givenname: Peirui
  surname: Bai
  fullname: Bai, Peirui
  email: bprbjd@163.com
  organization: Shandong University of Science and Technology,College of Electronic Information Engineering,Qingdao,China,266590
– sequence: 9
  givenname: Yande
  surname: Ren
  fullname: Ren, Yande
  organization: Affiliated Hospital of Qingdao University,Department of Radiology,Qingdao,China,266590
BookMark eNotT81KAzEYjKAHrX0CQb4XaE2ySXZzLEvVhYIH9VyS5ss2kE1kNxR68tXdqqdhhvlh7sh1ygkJeWR0zRjVT13bvbdbSbVq1pxyuqaU8vqKLHXdsJo3TAmq9C353kDKJ4xgYp_HUI4DZA8uj5OJcDTJwQlDgjCYHmHCfsBUTAk5gT1DSAX7caaph8GUwxEd-BALjnBJxnyYS2xIZjzPevn1RbysTVhgyA7jPbnxJk64_McF-XzefrSvq93bS9dudqvAWFNWgituK-el1M4aobxCr5kQjZXOSuasPXAlpDaeo5ZqlrCStObambqiRlUL8vDXGxBx_zXOh8bzXsuKCyqqHwAWXzY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICISCE50968.2020.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728164069
1728164060
EndPage 85
ExternalDocumentID 9532404
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-4262b3df559dba46f6ef91448b5db51dbbc26459af2e956b51e350729da730a63
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:39 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-4262b3df559dba46f6ef91448b5db51dbbc26459af2e956b51e350729da730a63
PageCount 5
ParticipantIDs ieee_primary_9532404
PublicationCentury 2000
PublicationDate 2020-Dec.
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationTitle 2020 7th International Conference on Information Science and Control Engineering (ICISCE)
PublicationTitleAbbrev ICISCE
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7442888
Snippet The performance of dorsal hand vein image segmentation is limited due to low contrast and intensity inhomogeneity. In this paper, a novel method is proposed by...
SourceID ieee
SourceType Publisher
StartPage 81
SubjectTerms Control engineering
dorsal hand vein
Fitting
Image segmentation
Information science
Level set
matched filter
Matched filters
the LBF model
Veins
Title A novel algorithm of dorsal hand vein image segmentation by integrating matched filter and local binary fitting level set model
URI https://ieeexplore.ieee.org/document/9532404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3c_Bo2nw0SXOU0tIKiqCF3spudlKLaSJtWtCLf92ZTaooHryFgd2EHbKzb_e9t0JcebInY_ptLOmq0KKKHxmxspV4vkInDpXShuV7H4wm3dupP62J6y8tDCIa8hm2-dGc5es83vBWWSfy2T6uWxd1Am6lVqsS_Tp21Bn3x4_9AduZMGXLZcqW7f68NcUUjeG-uNu9ruSKvLQ3hWrH77-cGP_7PQei9S3Pg4evwnMoapg1xccNZPkWU5DpPCfE_7yEPAGdr9YyBd4ehy0uMlgsaQKBNc6XlegoA_UGO9MI6g5oCUuJ1JAs-CAduKUpeKCMdJfihioNKdONqKcCzG06LTEZDp76I6u6XcFaEKgoLLaiV55OCFJoJbtBEmASEbzqKV8r39FKxS47zcjERQJRFELPZ59xLWlWkIF3JBpZnuGxAFcHoba1b6OjafnlEKp2bSUdaueFnhOfiCYP3uy1NNCYVeN2-nf4TOxx-krOyLloFKsNXlDlL9SlSfknosCyDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bfvoNHB-tGN3Y0BAIKxERIuJF27ZQ4NgODRC_-6752A6Px4G15SbulL-t7r_2-7xFy4_ImD_G3sbgjfAsjfmDIylbkMqFo6AshDcp36HXHjfsJm5TI7ZYLo5Qy4DNV04_mLl-m4UofldUDpuXjGjtkF-M-ozlbq6D9Ujuo91q9p1ZbC5po0JajQVu287NvigkbnQMy2LwwR4u81laZqIUfv7QY__tFh6T6TdCDx23oOSIllVTI5x0k6VrFwOPnFGv-lzmkEch0seQx6ANyWKtZArM5biGwVM_zgnaUgHiHjWwETgeYxKIrJUQzfZUOeqQJeSAMeRftBiwNsQYc4UwZmH46VTLutEetrlX0V7BmWFZklhajF66MsKiQgje8yFNRgAVWUzApGJVChI7WmuGRo7CMQpNymVYalxz3Be65x6ScpIk6IeBIz5e2ZLaiEhMwinW1YwtOcZzruzQ8JRW9eNO3XEJjWqzb2d_ma7LXHQ36035v-HBO9rUrcwTJBSlni5W6xDwgE1fG_V8X8bVY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+7th+International+Conference+on+Information+Science+and+Control+Engineering+%28ICISCE%29&rft.atitle=A+novel+algorithm+of+dorsal+hand+vein+image+segmentation+by+integrating+matched+filter+and+local+binary+fitting+level+set+model&rft.au=Guo%2C+Ziyang&rft.au=Ma%2C+Yao&rft.au=Min%2C+Xiaolin&rft.au=Li%2C+Hui&rft.date=2020-12-01&rft.pub=IEEE&rft.spage=81&rft.epage=85&rft_id=info:doi/10.1109%2FICISCE50968.2020.00027&rft.externalDocID=9532404