Early Diagnosis Prediction with Recurrent Neural Networks

Predicting medical diagnoses early is critical as it can improve treatment outcomes and ultimately save patient lives. Machine learning can help doctors make early predictions by leveraging an abundance of electronic health data. However, medical data is difficult to feed into predictive models beca...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE MIT Undergraduate Research Technology Conference (URTC) pp. 1 - 4
Main Authors Johnston, Daniel, Klindziuk, Liubou, Nazarov, Lolita, Hartvigsen, Thomas, Rundensteiner, Elke
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting medical diagnoses early is critical as it can improve treatment outcomes and ultimately save patient lives. Machine learning can help doctors make early predictions by leveraging an abundance of electronic health data. However, medical data is difficult to feed into predictive models because it typically has a large number of missing values. In this work, we propose an early diagnosis prediction model. First, we design an LSTM (Long Short-Term Memory), a type of neural network effective for modeling long time series. Second, to address the issue of missing data values, we implement various data imputation techniques and evaluate their effectiveness when used with the LSTM. Finally, we develop a novel LSTM model named Multi-Label Early Detection (MED), which has the goal of predicting patient diagnoses early in their hospital stay. We compare MED to state-of-the-art baselines using a subset of time series from the MIMIC-III database. We verify that our model obtains comparable AUC scores to that of standard LSTMs while encouraging early predictions.
AbstractList Predicting medical diagnoses early is critical as it can improve treatment outcomes and ultimately save patient lives. Machine learning can help doctors make early predictions by leveraging an abundance of electronic health data. However, medical data is difficult to feed into predictive models because it typically has a large number of missing values. In this work, we propose an early diagnosis prediction model. First, we design an LSTM (Long Short-Term Memory), a type of neural network effective for modeling long time series. Second, to address the issue of missing data values, we implement various data imputation techniques and evaluate their effectiveness when used with the LSTM. Finally, we develop a novel LSTM model named Multi-Label Early Detection (MED), which has the goal of predicting patient diagnoses early in their hospital stay. We compare MED to state-of-the-art baselines using a subset of time series from the MIMIC-III database. We verify that our model obtains comparable AUC scores to that of standard LSTMs while encouraging early predictions.
Author Rundensteiner, Elke
Nazarov, Lolita
Klindziuk, Liubou
Hartvigsen, Thomas
Johnston, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Johnston
  fullname: Johnston, Daniel
  email: dfj2106@columbia.edu
  organization: Columbia University,Department of Mathematics,New York,NY,USA
– sequence: 2
  givenname: Liubou
  surname: Klindziuk
  fullname: Klindziuk, Liubou
  email: lklindziuk21@amherst.edu
  organization: Amherst College,Department of Mathematics,Amherst,MA,USA
– sequence: 3
  givenname: Lolita
  surname: Nazarov
  fullname: Nazarov, Lolita
  email: lolita.nazarov@stonybrook.edu
  organization: Stony Brook University,Department of Mathematics,Stony Brook,NY,USA
– sequence: 4
  givenname: Thomas
  surname: Hartvigsen
  fullname: Hartvigsen, Thomas
  email: twhartvigsen@wpi.edu
  organization: Worcester Polytechnic Institute,Department of Data Science,Worcester,MA,USA
– sequence: 5
  givenname: Elke
  surname: Rundensteiner
  fullname: Rundensteiner, Elke
  email: rundenst@wpi.edu
  organization: Worcester Polytechnic Institute,Department of Data Science,Worcester,MA,USA
BookMark eNotj9FKwzAUQCPog5t-gSD9gdZ7m6TNfZQ6nTBUxvY8kuZWg7WVNGPs7x24p_N2OGcmLodxYCHuEQpEoIftetMoAqqLEpAKqirQJV6IGdalQW3QqGtBCxv7Y_YU7OcwTmHKPiL70KYwDtkhpK9sze0-Rh5S9sb7aPsT0mGM39ONuOpsP_HtmXOxfV5smmW-en95bR5XeUA0KZeMjjwp5WypJRGh9wygraxPQS1X4F3lfQ1aQusqbZQuu652qu2U96DkXNz9ewMz735j-LHxuDvfyD88oESw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/URTC49097.2019.9660521
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728158184
9781728158181
EndPage 4
ExternalDocumentID 9660521
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3e1b9d944ba2539991dde005a37660ce60db6dd70530cb658452ff7b4cf4dd043
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:38 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3e1b9d944ba2539991dde005a37660ce60db6dd70530cb658452ff7b4cf4dd043
PageCount 4
ParticipantIDs ieee_primary_9660521
PublicationCentury 2000
PublicationDate 2019-Oct.-11
PublicationDateYYYYMMDD 2019-10-11
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.-11
  day: 11
PublicationDecade 2010
PublicationTitle 2019 IEEE MIT Undergraduate Research Technology Conference (URTC)
PublicationTitleAbbrev URTC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7534313
Snippet Predicting medical diagnoses early is critical as it can improve treatment outcomes and ultimately save patient lives. Machine learning can help doctors make...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Deep Learning
Feeds
Hospitals
Machine learning
MIMICs
Multi-Label Classification
Predictive models
Recurrent neural networks
Time Series
Time series analysis
Title Early Diagnosis Prediction with Recurrent Neural Networks
URI https://ieeexplore.ieee.org/document/9660521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MnTypbOJvevBourRJm-Y8HUOYyNhgt9GXpDCUTVx38a83L60TxYOnljaQ5oW8l773fV8AbguBpRACWZ7yjEkUgmGqkKlCGiUra3ngrU2e8vFcPi6yRQfu9lwY51wAn7mYbkMt327MjlJlA1KSzIg1fqC0brhaLek34Xown86GUnOtCLCl47bxj1NTQtAYHcHkq7sGK_IS72qMzccvJcb_fs8x9L_pedHzPvCcQMete6CDVHF030DnVlvfgmowZPeIkq3RlDLrpMUUkSBH-eovAQG-7cN89DAbjll7LgJb-d-BmgmXoLZaSixTEpbVifdRfjWV3lnk3LicW8ytVX59cYO0xcjSqlIoTSW98aU4he56s3ZnEAn_ItcFZhp9OCsK9DNnjKVinXBFmZ1Dj4a9fGukL5btiC_-fnwJh2R6cu1JcgXd-n3nrn3MrvEmTNYnWkCX2A
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_3cGjHd3abe0ZJahADIGEG9lru4RogMi4-Nfb102MxoOnLWuTrX3pe9173_eVkFvJIeecA01jllABnFOIM6CZFDoThTHM89aGo7Q_FU-zZNYgdzsujLXWg89siLe-lm9Weoupsg4qSSbIGt9z-2qZVmytmvYbMdWZjiddoZjKELKlwrr7j3NTfNjoHZLh1wsrtMhruC0h1B-_tBj_-0VHpP1N0AtedqHnmDTsskWUFysO7ivw3GLjemAVBmc-wHRrMMbcOqoxBSjJkb-5i8eAb9pk2nuYdPu0PhmBLtwPQUm5jUAZJQTkMUrLqsh5KbeecucuUqZtygykxmRuhTENuMlI4qLIQOhCuOkX_IQ0l6ulPSUBdw2pkpAocAFNSnC209pguY5bmSdnpIXDnq8r8Yt5PeLzvx_fkP3-ZDiYDx5HzxfkAM2Ajj6KLkmzfN_aKxfBS7j2hvsEe-qbIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+MIT+Undergraduate+Research+Technology+Conference+%28URTC%29&rft.atitle=Early+Diagnosis+Prediction+with+Recurrent+Neural+Networks&rft.au=Johnston%2C+Daniel&rft.au=Klindziuk%2C+Liubou&rft.au=Nazarov%2C+Lolita&rft.au=Hartvigsen%2C+Thomas&rft.date=2019-10-11&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FURTC49097.2019.9660521&rft.externalDocID=9660521