Classification of Fake News on Facebook a Novel Social Network with K-Means Clustering Approach for Against Principal Component Analysis Method for Better Accuracy
To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification implemented in the dataset is used to detect the exact real meaning of the content. In this research study the dataset is labelled as title, text, subj...
Saved in:
Published in | 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC) pp. 722 - 726 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.10.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICOSEC54921.2022.9952063 |
Cover
Abstract | To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification implemented in the dataset is used to detect the exact real meaning of the content. In this research study the dataset is labelled as title, text, subject and date, these data are applied on the machine learning algorithms such as K-Means (KM) Clustering taken as group-1 and compared with Principal Component Analysis (PCA) algorithm taken as group-2 used for 80 percent of g power value and dataset used for this using 0.05 significant value and 95 percent of confidence interval also the standard deviation and error value are used. Results: The novel social network used for this research study with K-Means clustering and PCA algorithms and predicted best algorithm for better accuracy. |
---|---|
AbstractList | To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification implemented in the dataset is used to detect the exact real meaning of the content. In this research study the dataset is labelled as title, text, subject and date, these data are applied on the machine learning algorithms such as K-Means (KM) Clustering taken as group-1 and compared with Principal Component Analysis (PCA) algorithm taken as group-2 used for 80 percent of g power value and dataset used for this using 0.05 significant value and 95 percent of confidence interval also the standard deviation and error value are used. Results: The novel social network used for this research study with K-Means clustering and PCA algorithms and predicted best algorithm for better accuracy. |
Author | Saravanan, M.S. Nomesh, R. |
Author_xml | – sequence: 1 givenname: R. surname: Nomesh fullname: Nomesh, R. email: rapurunomesh17@saveetha.com organization: Saveetha University,Saveetha School Of Engineering,Department Of Computer Science And Engineering,Chennai,Tamilnadu,India – sequence: 2 givenname: M.S. surname: Saravanan fullname: Saravanan, M.S. email: sarvananms@saveetha.com organization: Saveetha University,Saveetha School Of Engineering,Department Of Computer Science And Engineering,Chennai,Tamilnadu,India |
BookMark | eNotkMtOwzAQRY0ECyj9AjbzAymx8_QyRC1U9IFUWFeOM26tpnYUu1T9Hn4UC7oajc69R6N5ILfGGiQEaDyhNObP83q9mdZZyhmdsJixCecZi_Pkhox5UdI8D6jI0_ie_NSdcE4rLYXX1oBVMBMHhBWeHYR9JiQ21h5AwMp-YwcbK7XoAvdnOxzgrP0e3qMlCuOg7k7O46DNDqq-H6yQe1B2gGontHEePgKSug_12h77cLLxUBnRXZx2sES_t-1f_gV90EAl5WkQ8vJI7pToHI6vc0S-ZtPP-i1arF_ndbWINKWlj5JSMkQpVclblgpFaVMqWTRcZE2WJJQ3bdxmrGlzhWWeBiSbFhnmihVtzFUyIk__Xo2I237QRzFcttfXJb8xvW1z |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICOSEC54921.2022.9952063 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665497640 1665497645 |
EndPage | 726 |
ExternalDocumentID | 9952063 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-38c2eeccf89d24af11b8fc7b9a5b53319bd0d52bd6fe864fc7cbde2e6f27d09f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:30 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-38c2eeccf89d24af11b8fc7b9a5b53319bd0d52bd6fe864fc7cbde2e6f27d09f3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9952063 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-20 |
PublicationDateYYYYMMDD | 2022-10-20 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC) |
PublicationTitleAbbrev | ICOSEC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8123077 |
Snippet | To classify the fake news on Facebook using machine learning algorithms with improving accuracy. Materials and Methods: The Fake news classification... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 722 |
SubjectTerms | Classification algorithms Clustering algorithms Fake news K-Means Clustering Machine Learning Machine learning algorithms NSN Prediction algorithms Principal Component Analysis Algorithm Social networking (online) |
Title | Classification of Fake News on Facebook a Novel Social Network with K-Means Clustering Approach for Against Principal Component Analysis Method for Better Accuracy |
URI | https://ieeexplore.ieee.org/document/9952063 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-AJ5_UgPE79-Cjg9GNsT4iYUHN0ERJeCNbezUEAoYwE_13_Ee9Kx9G44Nv3dqtl2vTu97H74S4agdG0_U48EgXj7yQWyT0lOcb5UcYs2eME5zTQdQfhnej1qgkrne5MIjogs-wzk3nyzcLXbCprKFUS5JILYsybbN1rtY2OMdXjdvuw1Ovy4hjfO-Tsr4Z_qNuihMbyb5ItxOuo0Wm9WKV1_XHLyzG_1J0IGrfCXrwuBM9h6KE86r4dAUuOfTHcRsWFpJsisDnGNBzkmnnGoUMBos3nME6NZf6XSQ4sEkW7r0USXpBd1YwhAL9HTob2HEg_RY6L9mENEqa3Rnp6XM-URZzIhO2ACeQurLUbvyNSxeCjtbFMtPvNTFMes_dvrepweBN6Oqx8oJYS6RltrEyMsxss5nHVrdzlbVy0hSbKje-acncRBbjKKQunRuUGFnZNr6ywZGozImIYwFWh4wnpnziTajajEwfNW2GEaIKSM86EVVm8Ph1DbMx3vD29O_XZ2KPF5nFiPTPRWW1LPCC9INVfuk2xheM_b7m |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMAJECDe-MCRji59rDmOadPG1oHEJnGb2sRBCLQitCLB3-GPYmcbCMSBW9okTeRU-RzH_izEWSMwmo7HgUe6eOyFXCLQU55vlB9jwjdjHOCcDuPuOLy6i-4q4vwrFgYRnfMZ1rjo7vJNoUs2lV0oFUmC1BWxSrgfRvNoraV7jq8ueq3r23aLOcf45CdlbdHhR-YUBxydDZEuh5z7izzWylle0--_2Bj_O6dNsfMdogc3X-CzJSo43RYfLsUlO_84eUNhoZM9IvBOBvTcybS7HIUMhsUrPsE8OJfqnS84sFEW-l6KhF_QeiqZRIG-Ds0F8TiQhgvN--yBdEoa3ZnpqTvvKcWUpglLihNIXWJq1_7SBQxBU-vyJdNvO2LcaY9aXW-RhcF7oMPHzAsSLZEW2ibKyDCz9XqeWN3IVRblpCvWVW58E8ncxBaTOKQqnRuUGFvZML6ywa6oTmkSewKsDplRTPkkm1A1mJs-rtsMY0QVkKa1L7ZZwJPnOdHGZCHbg79fn4q17igdTAa9Yf9QrPOCM6hI_0hUZy8lHpO2MMtP3E_yCa-PwjM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+3rd+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=Classification+of+Fake+News+on+Facebook+a+Novel+Social+Network+with+K-Means+Clustering+Approach+for+Against+Principal+Component+Analysis+Method+for+Better+Accuracy&rft.au=Nomesh%2C+R.&rft.au=Saravanan%2C+M.S.&rft.date=2022-10-20&rft.pub=IEEE&rft.spage=722&rft.epage=726&rft_id=info:doi/10.1109%2FICOSEC54921.2022.9952063&rft.externalDocID=9952063 |